题目链接:http://ybt.ssoier.cn:8088/statusx.php?runidx=12116507
题目:
【题目描述】给定n个正整数,将它们分组,使得每组中任意两个数互质。至少要分成多少个组? 【输入】第一行是一个正整数n。1 <= n <= 10。 第二行是n个不大于10000的正整数。 【输出】一个正整数,即最少需要的组数。 【输入样例】6 14 20 33 117 143 175 【输出样例】3 |
分析:
此题由于数据范围很小,所以可以直接使用暴搜的方式进行求解,按照题目的方式,可以将当前这个数放入到当前的最后一组中 或者 也可以另外开辟一组。
(为什么是放入到当前的最后一组呢?而不是任意一组呢?这主要是为了减少搜索的分支。我们每次搜索都把当前的组搜索完后在去搜索下一组,这样可以减少搜索的分支。)
而当前这个数开辟新的一组是时时刻刻都可以选择的。
但是加入到当前的最后一组则并不是,需要满足当前这个数 与 当前最后一组的所有数都互质才行。
优化1:
那么这里存在一个优化,就是当我们这个数可以加入到当前的这个最后一个组的时候,就不会去选择开辟一个新的数组。(因为这样才是满足最少的最优情况)
证明:
当 当前这个组有:1 ,3 5,
想要放7.这个时候7可以放入这个组后面
而7也可以另开辟一组。
如果选则另开辟一组(则要注意,我们只会对最后一组进行插入数,所以1,3,5那个不会在插入数了)
7,10,11...
而7,10,11两两互质,所以将7放入到原先一组,10,11还是两两互质,而原先一组1,3,5,7也依然满足两两互质,
所以当某个值可以插入到最后一组中的时候,必定选择插入到当前这一组中,而不选择另外开辟新的一组才是最优的。
优化2:
这里存在第二个优化,就是我们是按照组合的形式的进行分组的,所以3,1 和 1, 3实际上是同一组。
所以我们在进行dfs的时候,需要考虑到使用递归的方式求解组合型枚举。
题目链接:https://www.acwing.com/problem/content/95/
dfs(i)
{
dfs(i + 1) // 比当前的函数i大
}
代码实现:
# include <iostream>
# include <stdio.h>
using namespace std;
const int N = 15;
int n;
int a[N];
int g[N][N]; // g[i][j] : 第i组第j个放入某个值
bool st[N]; // 当前这个值是否被用过了
int ans = N ;
int gcd(int a ,int b)
{
return b ? gcd(b,a % b) : a;
}
bool check(int g[] ,int gc , int temp) // 如果g[]为空,gc为0,直接返回true
{
for(int i = 1 ; i <= gc ; i++)
{
if(gcd(g[i] , temp) > 1)
{
return false;
}
}
return true;
}
void dfs(int u,int gc,int idx , int num) // 当前第u组第gc个进行存值 , idx为从哪个数开始继续枚举,num为当前已经使用了多少个数
{
if(u >= ans) // 当前这一层大于ans了,就不需要继续了
{
return;
}
if(num == n)
{
ans = u;
}
bool flag = true;
for(int i = idx ; i <= n ; i++)
{
if(!st[i] && check(g[u],gc,a[i])) //如果i没有被用过,并且与当前这一组中所有值都互质
{
flag = false;
st[i] = true;
g[u][gc + 1] = a[i];
dfs(u,gc + 1 , i + 1 , num + 1);
st[i] = false; // 恢复现场
}
}
if(flag)
{
dfs(u + 1 , 0 , 1 , num);
}
}
int main()
{
scanf("%d",&n);
for(int i = 1 ; i <= n ; i++)
{
scanf("%d",&a[i]);
}
dfs(1,0 , 1,0);
printf("%d\n",ans);
return 0;
}