搜索:dfs:分成互质组

题目链接:http://ybt.ssoier.cn:8088/statusx.php?runidx=12116507

题目:

【题目描述】

给定n个正整数,将它们分组,使得每组中任意两个数互质。至少要分成多少个组?

【输入】

第一行是一个正整数n。1 <= n <= 10。

第二行是n个不大于10000的正整数。

【输出】

一个正整数,即最少需要的组数。

【输入样例】

6
14 20 33 117 143 175

【输出样例】

3

 分析:

此题由于数据范围很小,所以可以直接使用暴搜的方式进行求解,按照题目的方式,可以将当前这个数放入到当前的最后一组中 或者 也可以另外开辟一组。

(为什么是放入到当前的最后一组呢?而不是任意一组呢?这主要是为了减少搜索的分支。我们每次搜索都把当前的组搜索完后在去搜索下一组,这样可以减少搜索的分支。)

而当前这个数开辟新的一组是时时刻刻都可以选择的。

但是加入到当前的最后一组则并不是,需要满足当前这个数 与 当前最后一组的所有数都互质才行。

优化1: 

那么这里存在一个优化,就是当我们这个数可以加入到当前的这个最后一个组的时候,就不会去选择开辟一个新的数组。(因为这样才是满足最少的最优情况)

证明:

当 当前这个组有:1 ,3 5,

想要放7.这个时候7可以放入这个组后面

而7也可以另开辟一组。

如果选则另开辟一组(则要注意,我们只会对最后一组进行插入数,所以1,3,5那个不会在插入数了)

7,10,11...

而7,10,11两两互质,所以将7放入到原先一组,10,11还是两两互质,而原先一组1,3,5,7也依然满足两两互质,

所以当某个值可以插入到最后一组中的时候,必定选择插入到当前这一组中,而不选择另外开辟新的一组才是最优的。

优化2:

这里存在第二个优化,就是我们是按照组合的形式的进行分组的,所以3,1 和 1, 3实际上是同一组。

所以我们在进行dfs的时候,需要考虑到使用递归的方式求解组合型枚举。

题目链接:https://www.acwing.com/problem/content/95/

dfs(i)

{

        dfs(i + 1) // 比当前的函数i大

}

代码实现:

# include <iostream>
# include <stdio.h>
using namespace std;

const int N = 15;

int n;

int a[N];

int g[N][N]; // g[i][j] : 第i组第j个放入某个值

bool st[N];  // 当前这个值是否被用过了

int ans = N ;

int gcd(int a ,int b)
{
    return b ? gcd(b,a % b) : a;
}

bool check(int g[] ,int gc , int temp)  // 如果g[]为空,gc为0,直接返回true
{
    for(int i = 1 ; i <= gc ; i++)
    {
        if(gcd(g[i] , temp) > 1)
        {
            return false;
        }
    }
    return true;
}


void dfs(int u,int gc,int idx , int num) // 当前第u组第gc个进行存值 , idx为从哪个数开始继续枚举,num为当前已经使用了多少个数
{
    if(u >= ans) // 当前这一层大于ans了,就不需要继续了
    {
        return;
    }
    if(num == n)
    {
        ans = u;
    }

    bool flag = true;
    for(int i = idx ; i <= n ; i++)
    {
        if(!st[i] && check(g[u],gc,a[i])) //如果i没有被用过,并且与当前这一组中所有值都互质
        {
            flag = false;
            st[i] = true;

            g[u][gc + 1] = a[i];

            dfs(u,gc + 1 , i + 1 , num + 1);

            st[i] = false;  // 恢复现场
        }
    }
    if(flag)
    {
        dfs(u + 1 , 0 , 1 , num);
    }
}

int main()
{
    scanf("%d",&n);
    for(int i = 1 ; i <= n ; i++)
    {
        scanf("%d",&a[i]);
    }

    dfs(1,0 , 1,0);
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值