题目链接:https://codeforces.com/contest/1405/problem/B
分析:
此题主要是要想到,我们可以发现,因为前面的值减少,后面的值增加,
所以对于正数i,我们让a[i]减少,a[i + 1]增加。 因为a[i + 1]如果为正数,增加之后,再按照这个思路减少,不花钱。如果为负数,则刚好。
如果a[i]还是为负数。那么这就要花钱,因为前面已经为0,必须队i进行加法,而后面进行减少。那么对哪个进行减法呢?花了钱的减法很珍贵。
1.放到后面的正数上,本来加法减就不要钱,而且加法进行减,可以让负数进行增,还不要钱。所以不可能放正数上。
2.放到后面的负数上,本来负数进行增加就要钱,你还要减,那花的钱更多。
所以放到最后面。因为按照这样的操作。
a[i - 1], a[i]中1 ~ a[i - 2]都变为了0.
那么a[i - 1] + a[i]为0.
所以最后算a[i - 1]进行操作所需要的钱就可以了。
代码实现:
# include <iostream>
using namespace std;
const int N = 1e5 + 10;
int n;
int t;
long long a[N];
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
for(int i = 1 ; i <= n ; i++)
{
scanf("%lld",&a[i]);
}
long long ans = 0;
for(int i = 1 ; i <= n ; i++)
{
if(a[i] == 0)
{
continue;
}
if(a[i] > 0) // 那么a[i]减 , a[i + 1]增加,哪怕a[i + 1]为增加,那么继续,反正前减后增不要钱
{
a[i + 1] += a[i];
}
else // a[i] < 0 那么a[i]增加, 让a[n]减少 , 因为后面如果为正数,那么本来减少就不要钱,不用浪费这次花钱的机会,而负数减少太亏了,所以让最后的a[n]减少,最后一定只剩下a[n - 1]和a[n]
{
ans -= a[i];
a[n] += a[i];
}
}
printf("%lld\n",ans);
}
return 0;
}