自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(14)
  • 收藏
  • 关注

原创 关于我爬了厦大某网站这档事

起因2019年,大三的我在上《面向对象编程》这门课时,曾用Java爬取了厦门大学教育发展基金公开的捐赠名单。2021年厦大百年校庆,作为在厦大读了6年,马上第7年的我非常高兴能够见证这一历史时刻!本着好奇害死猫的原则,我想用Python再爬一次,看看百年校庆下捐赠名单有何不同,顺便温习Python,MySQL、Tableau的使用。在此说明:由于网站服务器访问数量的限制,所爬取的近6万条记录中有200多条是作废的,因此接下来我所分析得到的数据仅仅是作为参考,并不准确,且本着为母校信息保护的原则,以下内容

2022-03-06 16:49:59 936

原创 Tableau数据仪表盘

Tableau数据仪表盘Tableau简介工作表有轴图形折线图散点图地图无轴图形表饼图、环形图词云、气泡图仪表盘知识点来自B站戴师兄,本文系学后总结并加入了自己的想法,用于记录学习过程Tableau简介工作表有轴图形折线图散点图地图无轴图形表饼图、环形图词云、气泡图仪表盘...

2022-03-03 16:58:45 3896

原创 Excel自动化报表制作

Excel数据报表制作

2022-02-28 21:47:07 4904

原创 GAN初探:模拟高斯分布

GAN模拟高斯分布实验目的在《Generative Adversarial Nets》这篇论文中,用到了GAN模型去模拟原始数据的分布,即使得pg=pdatap_g = p_{data}pg​=pdata​,现在使用一维高斯分布输入模型,将pg=pdatap_g = p_{data}pg​=pdata​的逼近过程,用可视化的图形表示,看看这个过程是如何实现的。实验过程数据集在整个实验的过程中,所有的数据都是用numpy生成的均值为3,标准差为1的高斯分布。数据长度为1*500,数据集大小为1000

2020-12-04 16:49:01 1906 6

原创 笔记:Generative Adversarial Nets

Generative Adversarial NetsSummary作者提出了一个生成式模型,采用多层感知机实现。将生成式模型与判别式模型共同训练,两者扮演零和博弈游戏的两个玩家。对于生成器Generator,需要生成足以骗过判别器的图形,对于判别器Discriminator,需要识别输入是来自真实数据还是生成数据。随着生成器G的训练,判别器的输出将稳定在$ \frac{1} {2} $ 。Research Objective设计一种生成式模型,生成足以媲美真实数据的模拟数据。Problem St

2020-11-24 21:46:23 339

原创 linux学习笔记之基础指令

基础指令命令行与shell在概念上有所不同,命令行是指用户的输入界面,用于用户输入指令,而shell相当于命令行解释器,是操作系统提供给用户的一个接口,用来解释运行命令行输入的命令。linux下命令和文件都是区分大小写的[user@主机名 当前终端的工作目录] #user:当前用户名主机名:当前工作的主机工作目录:顾名思义#:身份识别符号,‘#’表示当前为超级管理员,否则显示‘$’关机命令:shutdown(正常关机),halt(关闭内存),init 0ls [选项] 路径:linux

2020-10-23 20:41:42 112

原创 笔记:A particle-filter framework for robust cryo-EM 3D reconstruction

TitleA particle-filter framework for robust cryo-EM 3D reconstructionSummary文章为冷冻电镜图像设计了一种粒子滤波的方法,通过初始化一批点作为单个图像的后验概率密度区域,通过迭代的方式找到似然区,不断地迭代,得到最优值,由此确定每张图片的参数。算法能够进行参数自适应调整,提高了3D重建的精度。Research Objective在单粒子低温冷冻电镜中,为每一个粒子图像估计一组参数(旋转、平移、焦散和结构状态),并重建3D模型

2020-10-23 19:38:19 588 1

原创 THUNDER软件安装历程

THUNDER软件安装历程系统选择THUNDER是18年发表的文章中使用的软件,建议使用linux系统编译安装,ubuntu16和ubuntu18都可,ubuntu20太新,不合适。安装时,单系统就用ubuntu启动盘安装即可,转载双系统安装教程GCC版本不限,ubuntu直接输入,转载教程sudo apt updatesudo apt-get install buile-essentialsudo apt-get install manpages-dev #非必须,这是开发手册gcc --

2020-10-23 19:32:52 461

原创 Linux学习笔记之目录结构

Linux目录结构bin(binary):二进制;该目录存储的都是二进制文件,均为可运行文件dev(devices):设备;主要存放一些外接设备,例如U盘,移动硬盘等。在其中的一些外界设备不能直接被使用,需要挂载(类似windows下分配盘符的操作)etc(etcetera):等等;主要存储一些配置文件home:用户目录,除了root用户以外的用户文件夹,类似windows下的userproc(process):进程;存储linux运行时的进程root:超级管理员目录sbin(super b

2020-10-11 19:59:10 123

原创 笔记:cryosPArc: algorithms for rapid unsupervised cryo-em structure determination

TitlecryosPArc: algorithms for rapid unsupervised cryo-em structure determinationSummary在低温电镜中,得到的是蛋白质在各个姿态下的二维图,本文主题的研究内容即使用SGD,以及分支定界算法。在耗时短,计算资源占用少的前提下,得到高分辨率的3D结构图,且结果比同行的结果更好,耗时更短。算法集成在网站(http://www.cryosparc.com)可供查阅Research Objective单粒子低温冷冻电镜是确

2020-09-28 15:15:26 1372

原创 AlexNet学习随手记

TitleImageNet Classification with Deep Convolutional Neural NetworksSummary文章是2012年非常出名的文章,采用了卷积,ReLU,MaxPooling等常用的方法,利用1200000张图片进行训练,评价指标为图像领域常用的top-1与top-5两种方法,训练耗时6天(12年显卡),测试结果采用top-5得到错误率为16.4%,比第二名高了十个百分点。Research Objective在ILSVRC比赛上,使用有1000个类的

2020-08-31 22:36:33 142

原创 深度学习中的正则化处理Normalization

NormalizationBatch Normaliation批标准化处理,批:指一批数据,通常为mini-batch;标准化:0均值,1方差。可以用更大学习率,加速模型收敛可以不用精心设计权值初始化可以不用dropout或者较小的dropout可以不用L2或者较小的Weight decay可以不用LRN(local response normalization)计算式其中,normalize步骤中ϵ\epsilonϵ为修正项,为了防止分母为零的情况出现。处理后x^\hat{x}x^

2020-08-27 21:25:33 556

原创 Pytorch常用API汇总(持续更新)

Pytorch常用API汇总文章目录Pytorch常用API汇总损失函数nn.CrossEntropyLoss()nn.NLLLossnn.BCELossnn.BCEWithLogitsLoss损失函数nn.CrossEntropyLoss()将nn.LogSoftmax()与nn.NLLLoss()结合,进行交叉熵计算weight:各类别的loss设置权值,类别即标签,是向量形式,要对每个样本都设置权重,默认均为1。ignore_index:忽略某个类别。reduction:计算模式,可分

2020-08-24 15:48:00 4385

原创 神经网络基础知识之感知机

神经网络基础知识文章目录神经网络基础知识感知机激活函数学习率损失函数权值初始化正则化方法感知机感知机是第一个人工神经元,其公式:O=σ(<w,x>+b)O = \sigma(<w,x>+b)O=σ(<w,x>+b) 其中OOO表示输出,σ\sigmaσ 表示激活函数,<w,x><w,x><w,x> 表示矩阵相乘,bbb为偏置。该感知机输出为1或0,是一个传统的二分类模型。但是感知机有致命缺陷,即感知机无法解决异或问题。​简单证明

2020-08-22 22:16:09 860

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除