给定一个由 0 和 1 组成的矩阵 mat ,请输出一个大小相同的矩阵,
其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。
两个相邻元素间的距离为 1 。
示例 1:
输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]
示例 2:
输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]
代码
class Solution {
static int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
public int[][] updateMatrix(int[][] mat) {
// 首先将所有的 0 都入队,并且将 1 的位置设置成 -1,
//表示该位置是 未被访问过的 1
Queue<int[]> queue = new LinkedList<>();
int m=mat.length;
int n=mat[0].length;
for(int i=0;i<m;i++){
for(int j=0;j<n;j++){
if(mat[i][j]==0){
queue.add(new int[]{i,j});
}else{
mat[i][j]=-1;
}
}
}
while(!queue.isEmpty()){
int[] ma=queue.poll();
int x=ma[0], y=ma[1];
for(int i=0;i<4;i++){
int newX=x+dirs[i][0];
int newY=y+dirs[i][1];
// 如果四邻域的点是 -1,表示这个点是未被访问过的 1
// 所以这个点到 0 的距离就可以更新成 mat[x][y] + 1。
if (newX >= 0 && newX < m && newY >= 0 && newY < n
&& mat[newX][newY] == -1) {
mat[newX][newY] = mat[x][y] + 1;
queue.add(new int[]{newX, newY});
}
}
}
return mat;
}
}