LeetCode算法入门之 广度优先搜索 / 深度优先搜索—542. 01 矩阵

给定一个由 01 组成的矩阵 mat ,请输出一个大小相同的矩阵,
其中每一个格子是 mat 中对应位置元素到最近的 0 的距离。

两个相邻元素间的距离为 1
示例 1

在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[0,0,0]]
输出:[[0,0,0],[0,1,0],[0,0,0]]

示例 2

在这里插入图片描述

输入:mat = [[0,0,0],[0,1,0],[1,1,1]]
输出:[[0,0,0],[0,1,0],[1,2,1]]

代码

class Solution {
    static int[][] dirs = {{-1, 0}, {1, 0}, {0, -1}, {0, 1}};
    public int[][] updateMatrix(int[][] mat) {

         
        // 首先将所有的 0 都入队,并且将 1 的位置设置成 -1,
        //表示该位置是 未被访问过的 1
        Queue<int[]> queue = new LinkedList<>();
        int m=mat.length;
        int n=mat[0].length;
        for(int i=0;i<m;i++){
            for(int j=0;j<n;j++){
                if(mat[i][j]==0){
                     queue.add(new int[]{i,j});
                }else{
                    mat[i][j]=-1;
                }
            }
        }

        
        while(!queue.isEmpty()){
            int[] ma=queue.poll();
            int x=ma[0], y=ma[1];
            for(int i=0;i<4;i++){
                int newX=x+dirs[i][0];
                int newY=y+dirs[i][1];
                 // 如果四邻域的点是 -1,表示这个点是未被访问过的 1
                // 所以这个点到 0 的距离就可以更新成 mat[x][y] + 1。
                if (newX >= 0 && newX < m && newY >= 0 && newY < n 
                        && mat[newX][newY] == -1) {
                    mat[newX][newY] = mat[x][y] + 1;
                    queue.add(new int[]{newX, newY});
                }

            }
        }
        return mat;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值