给定一个三角形 triangle ,找出自顶向下的最小路径和。
每一步只能移动到下一行中相邻的结点上。
相邻的结点 在这里指的是 下标 与 上一层结点下标
相同或者等于 上一层结点下标 + 1 的两个结点。
也就是说,如果正位于当前行的下标 i ,
那么下一步可以移动到下一行的下标 i 或 i + 1 。
示例 1:
输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:
2
3 4
6 5 7
4 1 8 3
自顶向下的最小路径和为 11(即,2 + 3 + 5 + 1 = 11)。
示例 2:
输入:triangle = [[-10]]
输出:-10
思路
相邻结点:与(i, j) 点相邻的结点为 (i + 1, j) 和 (i + 1, j + 1)。
f(i,j)=min(f(i+1,j),f(i+1,j+1))+triangle[i][j]
代码
class Solution {
public int minimumTotal(List<List<Integer>> triangle) {
int n=triangle.size();
int[][] news=new int[n+1][n+1];
// 从三角形的最后一行开始递推。
for(int i=n-1;i>=0;i--){
for(int j=0;j<=i;j++){
news[i][j]=Math.min(news[i+1][j],news[i+1][j+1])+triangle.get(i).get(j);
}
}
return news[0][0];
}
}