关于双指针方法的一些运用

24 篇文章 0 订阅
4 篇文章 0 订阅
本文介绍了两种常见的数组操作算法——双指针和滑动窗口,并通过实例详细解析了它们的解题思路。对于有序数组的平方问题,双指针法在保持非递减顺序的同时提高了效率;而在旋转数组问题中,通过数组翻转的方法实现了O(n)的时间复杂度。此外,滑动窗口方法在解决和大于等于目标值的最短子数组问题时,展现出高效性。这些算法在处理特定类型的数组操作时具有显著优势。
摘要由CSDN通过智能技术生成

双指针的解题思路。指针的解题思路一般分为三类:

  • 首尾指针:范围查找,比如二分搜索等

  • 滑动窗口:指针处在数组同一方向,根据条件移动左右指针,用于获取范围和等

  • 快慢指针: 多用于链表计算时,判断是否有环等
    
  • 有序数组的平方

给你一个按 非递减顺序 排序的整数数组 nums,返回 每个数字的平方 组成的新数组,要求也按 非递减顺序 排序。
示例:
输入:nums = [-4,-1,0,3,10]
输出:[0,1,9,16,100]
解释:平方后,数组变为 [16,1,0,9,100]
排序后,数组变为 [0,1,9,16,100]

class Solution {
    public int[] sortedSquares(int[] nums) {
//1.暴力解法,这个时间复杂度是 O(n + nlogn), 可以说是O(nlogn)的时间复杂度,但为了和下面双指针法算法时间复杂度对比,记为 O(n + nlogn)。        
 for(int i=0;i<nums.length;i++){
     nums[i]*=nums[i];
 }
 Arrays.sort(nums);
 return nums;
  }
}
class Solution {
    public int[] sortedSquares(int[] nums) {
//双指针解法数组其实是有序的, 只不过负数平方之后可能成为最大数了。
//那么数组平方的最大值就在数组的两端,不是最左边就是最右边,不可能是中间。
//此时可以考虑双指针法了,i指向起始位置,j指向终止位置。
//定义一个新数组result,和A数组一样的大小,让k指向result数组终止位置
int []result=new int[nums.length];
int i=0;
int j=nums.length-1;
int k=nums.length-1;
while(k>=0){
    if(nums[i]*nums[i]>nums[j]*nums[j]){
        result[k]=nums[i]*nums[i];
        i++;
        k--;
    }else{
 result[k]=nums[j]*nums[j];
 j--;
 k--;
    }
}
return result;
    }
}
//此时的时间复杂度为O(n),相对于暴力排序的解法O(n + nlogn)还是提升不少的。
  • 旋转数组

给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数。
输入: nums = [1,2,3,4,5,6,7], k = 3
输出: [5,6,7,1,2,3,4]
解释:
向右旋转 1 步: [7,1,2,3,4,5,6]
向右旋转 2 步: [6,7,1,2,3,4,5]
向右旋转 3 步: [5,6,7,1,2,3,4]
//下题题解来自力扣官方题解。

//方法一:使用额外的数组
//我们可以使用额外的数组来将每个元素放至正确的位置。用 nnn 表示数组的长度,我们遍历原数组,
//将原数组下标为 iii 的元素放至新数组下标为 (i+k) mod n(i+k)\bmod n(i+k)modn
// 的位置,最后将新数组拷贝至原数组即可。
class Solution {
    public void rotate(int[] nums, int k) {
        int n = nums.length;
        int[] newArr = new int[n];
        for (int i = 0; i < n; ++i) {
            newArr[(i + k) % n] = nums[i];
        }
        System.arraycopy(newArr, 0, nums, 0, n);
    }
}

复杂度分析

    时间复杂度: O(n)O(n)O(n),其中 nnn 为数组的长度。

    空间复杂度: O(n)O(n)O(n)

方法二:数组翻转

该方法基于如下的事实:当我们将数组的元素向右移动 kkk 次后,尾部 k mod nk\bmod nkmodn 个元素会移动至数组头部,其余元素向后移动 k mod nk\bmod nkmodn 个位置。

该方法为数组的翻转:我们可以先将所有元素翻转,这样尾部的 k mod nk\bmod nkmodn 个元素就被移至数组头部,然后我们再翻转 [0,k mod n−1][0, k\bmod n-1][0,kmodn−1] 区间的元素和 [k mod n,n−1][k\bmod n, n-1][kmodn,n−1] 区间的元素即能得到最后的答案。

我们以 n=7n=7n=7,k=3k=3k=3 为例进行如下展示:
图

class Solution {
    public void rotate(int[] nums, int k) {
        k %= nums.length;
        reverse(nums, 0, nums.length - 1);
        reverse(nums, 0, k - 1);
        reverse(nums, k, nums.length - 1);
    }

    public void reverse(int[] nums, int start, int end) {
        while (start < end) {
            int temp = nums[start];
            nums[start] = nums[end];
            nums[end] = temp;
            start += 1;
            end -= 1;
        }
    }
}
复杂度分析

 - 时间复杂度:O(n),其中 n 为数组的长度。每个元素被翻转两次,一共 n 个元素,因此总时间复杂度为 O(2n)=O(n)- 空间复杂度:O(1)

双指针解法:

//原数nums = [1,2,3,4,5,6,7] K = 3
    //先对所有数反转 [7,6,5,4,3,2,1]
    //再对前一部分数反转[5,6,7,4,3,2,1]
    //再对剩下的数反转[5,6,7,1,2,3,4]
class Solution {
    public void rotate(int[] nums, int k) {
 // 还需要注意当k>nums.length时,应该进行一次取余操作。
int len=nums.length;
k=k%len;
    reverse(nums,0,len-1);
         reverse(nums,0,k-1);
         reverse(nums,k,len-1);
    }
public void reverse(int [] nums,int i,int j){
    //i为反转的起始点,j为结束点
      while( i < j ){
            int temp = nums[i];
             nums[i] = nums[j];
             nums[j] = temp;
             i++;
             j--;
         }
}
    
}

  • 滑动窗口方法
    有了方法我们可以快速完成解题,但前提是,首先你要知道,题目属于滑动窗口的解题范围。那么滑窗的题目怎么识别呢?一般题目中都会有明确的“连续子数组”、“连续子串”等关键字,另外可能会附带最大、最小的限定词进行补充。
    在这里插入图片描述在这里插入图片描述在这里插入图片描述
  • 剑指 Offer II 008. 和大于等于 target 的最短子数组
    给定一个含有 n 个正整数的数组和一个正整数 target 。

找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。

在这里插入图片描述

分析

根据题目,已经将刚才提到的关键字进行了加粗表示,首先看到连续子数组,我们就该考虑是否可以通过滑窗的思维去解题。
然后看到了长度最小的限制,分析题意滑窗思维没毛病。
那么刚才模板中说的题目条件时什么呢?满足滑窗内数字之和需要大于等于target。
返回值ret又是什么?符合条件的子数组长度。

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
  int left = 0;
        int total = 0;
        int ret = Integer.MAX_VALUE;
        for (int right = 0; right < nums.length; right++) {
            total += nums[right];
            while (total >= target) {
                ret = Math.min(ret, right - left + 1);
                total -= nums[left++];
            }
        }
        return ret > nums.length ? 0 : ret;
    }
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

little-peter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值