牛客多校第5场D Drop Voicing

题意

有一个1~n的排列,有以下两种操作:

  1. Drop-2:将倒数第二个数放到开头,前面的数向后平移
  2. Invert:将倒数第二个数放到开头,前面的数向后平移

若干连续的Drop-2称为Multi-drop
计算要使该排列排成1~n所需的最少的Multi-drop的数量。

做法

首先Invert可以无条件使用,那么就可以想到使用Multi-drop相当于将一个数字移动到想移到的地方,如下演示:
4 1 2 3 5 6
Invert ⇒ \Rightarrow 1 2 3 5 6 4
Drop-2 ∗ * 4 ⇒ \Rightarrow 5 6 1 2 3 4
Invert ⇒ \Rightarrow 1 2 3 4 5 6
以此类推。
所以所求即为需要移动的最少的数字,也就是n-最长不下降子序列长度。
由于Invert操作,需要求n种排列中最大的最长不下降子序列长度。
时间复杂度 O ( n 3 ) O(n^3) O(n3) O ( n 2 l o g n ) O(n^2logn) O(n2logn)

#include<bits/stdc++.h>
using namespace std;
int n;
int a[600];
int dp[600];
int main(){
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",a+i);
    int ans=0;
    for(int it=1;it<=n;it++){
    	int t=a[1];
    	for(int i=1;i<n;i++) a[i]=a[i+1]; a[n]=t;
    	memset(dp,0,sizeof(dp));
	    dp[n]=1;
	    for(int i=n-1;i;i--){
	    	for(int j=i+1;j<=n;j++){
	    		if(a[i]<a[j]) dp[i]=max(dp[j],dp[i]);
	    	}
	    	dp[i]++;
	    }
	    int maxx=0;
	    for(int i=1;i<=n;i++) maxx=max(maxx,dp[i]);
	    ans=max(ans,maxx);
    }
    printf("%d",n-ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值