使用OpenVinoSharp.win
using System;
using OpenCvSharp;
using OpenVinoSharp;
using OpenCvSharp.Dnn;
using System.IO;
using System.Collections.Generic;
namespace Yolov5Seg
{
class Program
{
private static float sigmoid(float a)
{
float b = 1.0f / (1.0f + (float)Math.Exp(-a));
return b;
}
public static string[] read_class_names(string path)
{
string[] class_names;
List<string> str = new List<string>();
StreamReader sr = new StreamReader(path);
string line;
while ((line = sr.ReadLine()) != null)
{
str.Add(line);
}
class_names = str.ToArray();
return class_names;
}
static void Main(string[] args)
{
float[] det_result_array = new float[25200 * 117];
float[] proto_result_array = new float[32 * 160 * 160];
float conf_threshold = 0.25f;
float nms_threshold = 0.5f;
float[] factors = new float[4];
List<Rect> position_boxes = new List<Rect>();
List<int> class_ids = new List<int>();
List<float> class_scores = new List<float>();
List<float> confidences = new List<float>();
List<Mat> masks = new List<Mat>();
Mat masked_img = new Mat();
string model_path = "yolov5n-seg.onnx";
string image_path = "bus.jpg";
Mat image = Cv2.ImRead(image_path);
string[] classes_names = read_class_names("coco.names");
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
factors[0] = factors[1] = (float)(max_image_length / 640.0);
factors[2] = image.Rows;
factors[3] = image.Cols;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
factors[0] = factors[1] = (float)(max_image_length / 640.0);
Core core = new Core(model_path, "CPU");
byte[] image_data = max_image.ImEncode(".bmp");
ulong image_size = Convert.ToUInt64(image_data.Length);
core.load_input_data("images", image_data, image_size, 1);
core.infer();
det_result_array = core.read_infer_result<float>("output0", 25200 * 117);
proto_result_array = core.read_infer_result<float>("output1", 32 * 160 * 160);
core.delet();
Mat detect_data = new Mat(25200, 117, MatType.CV_32F, det_result_array);
Mat proto_data = new Mat(32, 25600, MatType.CV_32F, proto_result_array);
for (int i = 0; i < detect_data.Rows; i++)
{
Mat conf_scores = detect_data.Row(i).ColRange(4, 5);
float conf_value = conf_scores.Get<float>(0, 0);
if (conf_value < conf_threshold)
{
continue;
}
Mat classes_scores = detect_data.Row(i).ColRange(5, 85);//GetArray(i, 5, classes_scores);
Point max_classId_point, min_classId_point;
double max_score, min_score;
Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
out min_classId_point, out max_classId_point);
if (max_score > 0.25)
{
Mat mask = detect_data.Row(i).ColRange(85, 117);
float cx = detect_data.At<float>(i, 0);
float cy = detect_data.At<float>(i, 1);
float ow = detect_data.At<float>(i, 2);
float oh = detect_data.At<float>(i, 3);
int x = (int)((cx - 0.5 * ow) * factors[0]);
int y = (int)((cy - 0.5 * oh) * factors[1]);
int width = (int)(ow * factors[0]);
int height = (int)(oh * factors[1]);
Rect box = new Rect();
box.X = x;
box.Y = y;
box.Width = width;
box.Height = height;
position_boxes.Add(box);
class_ids.Add(max_classId_point.X);
classes_scores.Add(max_score);
confidences.Add((float)max_score);
masks.Add(mask);
}
}
int[] indexes = new int[position_boxes.Count];
CvDnn.NMSBoxes(position_boxes, confidences, conf_threshold, nms_threshold, out indexes);
Mat rgb_mask = Mat.Zeros(new Size((int)factors[3], (int)factors[2]), MatType.CV_8UC3);
Random rd = new Random();
for (int i = 0; i < indexes.Length; i++)
{
int index = indexes[i];
Rect box = position_boxes[index];
int box_x1 = Math.Max(0, box.X);
int box_y1 = Math.Max(0, box.Y);
int box_x2 = Math.Max(0, box.BottomRight.X);
int box_y2 = Math.Max(0, box.BottomRight.Y);
Mat original_mask = masks[index] * proto_data;
for (int col = 0; col < original_mask.Cols; col++)
{
original_mask.At<float>(0, col) = sigmoid(original_mask.At<float>(0, col));
}
Mat reshape_mask = original_mask.Reshape(1, 160);
int mx1 = Math.Max(0, (int)((box_x1 / factors[0]) * 0.25));
int mx2 = Math.Max(0, (int)((box_x2 / factors[0]) * 0.25));
int my1 = Math.Max(0, (int)((box_y1 / factors[1]) * 0.25));
int my2 = Math.Max(0, (int)((box_y2 / factors[1]) * 0.25));
Mat mask_roi = new Mat(reshape_mask, new OpenCvSharp.Range(my1, my2), new OpenCvSharp.Range(mx1, mx2));
Mat actual_maskm = new Mat();
Cv2.Resize(mask_roi, actual_maskm, new Size(box_x2 - box_x1, box_y2 - box_y1));
for (int r = 0; r < actual_maskm.Rows; r++)
{
for (int c = 0; c < actual_maskm.Cols; c++)
{
float pv = actual_maskm.At<float>(r, c);
if (pv > 0.5)
{
actual_maskm.At<float>(r, c) = 1.0f;
}
else
{
actual_maskm.At<float>(r, c) = 0.0f;
}
}
}
Mat bin_mask = new Mat();
actual_maskm = actual_maskm * 200;
actual_maskm.ConvertTo(bin_mask, MatType.CV_8UC1);
if ((box_y1 + bin_mask.Rows) >= factors[2])
{
box_y2 = (int)factors[2] - 1;
}
if ((box_x1 + bin_mask.Cols) >= factors[3])
{
box_x2 = (int)factors[3] - 1;
}
Mat mask = Mat.Zeros(new Size((int)factors[3], (int)factors[2]), MatType.CV_8UC1);
bin_mask = new Mat(bin_mask, new OpenCvSharp.Range(0, box_y2 - box_y1), new OpenCvSharp.Range(0, box_x2 - box_x1));
Rect rois = new Rect(box_x1, box_y1, box_x2 - box_x1, box_y2 - box_y1);
bin_mask.CopyTo(new Mat(mask, rois));
Cv2.Add(rgb_mask, new Scalar(rd.Next(0, 255), rd.Next(0, 255), rd.Next(0, 255)), rgb_mask, mask);
Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
Cv2.Rectangle(image, new Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y - 20),
new Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
Cv2.PutText(image, classes_names[class_ids[index]] + "-" + confidences[index].ToString("0.00"),
new Point(position_boxes[index].X, position_boxes[index].Y - 10),
HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
Cv2.AddWeighted(image, 0.5, rgb_mask.Clone(), 0.5, 0, masked_img);
}
Cv2.ImShow("Result", masked_img);
Cv2.WaitKey(5000);
}
}
}
使用Microsoft.ML.OnnxRuntime
using System;
using System.IO;
using System.Linq;
using System.Collections.Generic;
using Microsoft.ML.OnnxRuntime;
using Microsoft.ML.OnnxRuntime.Tensors;
using OpenCvSharp;
using OpenCvSharp.Dnn;
namespace Yolov5Seg
{
class Program
{
private static float sigmoid(float a)
{
float b = 1.0f / (1.0f + (float)Math.Exp(-a));
return b;
}
public static string[] read_class_names(string path)
{
string[] class_names;
List<string> str = new List<string>();
StreamReader sr = new StreamReader(path);
string line;
while ((line = sr.ReadLine()) != null)
{
str.Add(line);
}
class_names = str.ToArray();
return class_names;
}
static void Main(string[] args)
{
float conf_threshold = 0.25f;
float nms_threshold = 0.5f;
string model_path = "yolov5n-seg.onnx";
string image_path = "bus.jpg";
string[] classes_names = read_class_names("coco.names");
Mat masked_img = new Mat();
List<NamedOnnxValue> input_ontainer;
List<Rect> position_boxes = new List<Rect>();
List<int> class_ids = new List<int>();
List<float> class_scores = new List<float>();
List<float> confidences = new List<float>();
List<Mat> masks = new List<Mat>();
Tensor<float> result_tensors_det;
Tensor<float> result_tensors_proto;
SessionOptions options;
InferenceSession onnx_session;
Tensor<float> input_tensor;
IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
DisposableNamedOnnxValue[] results_onnxvalue;
options = new SessionOptions();
options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
options.AppendExecutionProvider_CPU(0);
onnx_session = new InferenceSession(model_path, options);
input_ontainer = new List<NamedOnnxValue>();
Mat image = Cv2.ImRead(image_path);
int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
Rect roi = new Rect(0, 0, image.Cols, image.Rows);
image.CopyTo(new Mat(max_image, roi));
float[] det_result_array = new float[25200 * 117];
float[] proto_result_array = new float[32 * 160 * 160];
float[] factors = new float[4];
factors[0] = factors[1] = (float)(max_image_length / 640.0);
factors[2] = image.Rows;
factors[3] = image.Cols;
Mat image_rgb = new Mat();
Mat resize_image = new Mat();
Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
for (int y = 0; y < resize_image.Height; y++)
{
for (int x = 0; x < resize_image.Width; x++)
{
input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
}
}
input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
result_infer = onnx_session.Run(input_ontainer);
results_onnxvalue = result_infer.ToArray();
result_tensors_det = results_onnxvalue[0].AsTensor<float>();
result_tensors_proto = results_onnxvalue[1].AsTensor<float>();
det_result_array = result_tensors_det.ToArray();
proto_result_array = result_tensors_proto.ToArray();
Mat detect_data = new Mat(25200, 117, MatType.CV_32F, det_result_array);
Mat proto_data = new Mat(32, 25600, MatType.CV_32F, proto_result_array);
for (int i = 0; i < detect_data.Rows; i++)
{
Mat conf_scores = detect_data.Row(i).ColRange(4, 5);
float conf_value = conf_scores.Get<float>(0, 0);
if (conf_value < conf_threshold)
{
continue;
}
Mat classes_scores = detect_data.Row(i).ColRange(5, 85);
Point max_classId_point, min_classId_point;
double max_score, min_score;
Cv2.MinMaxLoc(classes_scores, out min_score, out max_score,
out min_classId_point, out max_classId_point);
if (max_score > 0.25)
{
Mat mask = detect_data.Row(i).ColRange(85, 117);
float cx = detect_data.At<float>(i, 0);
float cy = detect_data.At<float>(i, 1);
float ow = detect_data.At<float>(i, 2);
float oh = detect_data.At<float>(i, 3);
int x = (int)((cx - 0.5 * ow) * factors[0]);
int y = (int)((cy - 0.5 * oh) * factors[1]);
int width = (int)(ow * factors[0]);
int height = (int)(oh * factors[1]);
Rect box = new Rect();
box.X = x;
box.Y = y;
box.Width = width;
box.Height = height;
position_boxes.Add(box);
class_ids.Add(max_classId_point.X);
classes_scores.Add(max_score);
confidences.Add((float)max_score);
masks.Add(mask);
}
}
int[] indexes = new int[position_boxes.Count];
CvDnn.NMSBoxes(position_boxes, confidences, conf_threshold, nms_threshold, out indexes);
Mat rgb_mask = Mat.Zeros(new Size((int)factors[3], (int)factors[2]), MatType.CV_8UC3);
Random rd = new Random();
for (int i = 0; i < indexes.Length; i++)
{
int index = indexes[i];
Rect box = position_boxes[index];
int box_x1 = Math.Max(0, box.X);
int box_y1 = Math.Max(0, box.Y);
int box_x2 = Math.Max(0, box.BottomRight.X);
int box_y2 = Math.Max(0, box.BottomRight.Y);
Mat original_mask = masks[index] * proto_data;
for (int col = 0; col < original_mask.Cols; col++)
{
original_mask.At<float>(0, col) = sigmoid(original_mask.At<float>(0, col));
}
Mat reshape_mask = original_mask.Reshape(1, 160);
int mx1 = Math.Max(0, (int)((box_x1 / factors[0]) * 0.25));
int mx2 = Math.Max(0, (int)((box_x2 / factors[0]) * 0.25));
int my1 = Math.Max(0, (int)((box_y1 / factors[1]) * 0.25));
int my2 = Math.Max(0, (int)((box_y2 / factors[1]) * 0.25));
Mat mask_roi = new Mat(reshape_mask, new OpenCvSharp.Range(my1, my2), new OpenCvSharp.Range(mx1, mx2));
Mat actual_maskm = new Mat();
Cv2.Resize(mask_roi, actual_maskm, new Size(box_x2 - box_x1, box_y2 - box_y1));
for (int r = 0; r < actual_maskm.Rows; r++)
{
for (int c = 0; c < actual_maskm.Cols; c++)
{
float pv = actual_maskm.At<float>(r, c);
if (pv > 0.5)
{
actual_maskm.At<float>(r, c) = 1.0f;
}
else
{
actual_maskm.At<float>(r, c) = 0.0f;
}
}
}
Mat bin_mask = new Mat();
actual_maskm = actual_maskm * 200;
actual_maskm.ConvertTo(bin_mask, MatType.CV_8UC1);
if ((box_y1 + bin_mask.Rows) >= factors[2])
{
box_y2 = (int)factors[2] - 1;
}
if ((box_x1 + bin_mask.Cols) >= factors[3])
{
box_x2 = (int)factors[3] - 1;
}
Mat mask = Mat.Zeros(new Size((int)factors[3], (int)factors[2]), MatType.CV_8UC1);
bin_mask = new Mat(bin_mask, new OpenCvSharp.Range(0, box_y2 - box_y1), new OpenCvSharp.Range(0, box_x2 - box_x1));
Rect rois = new Rect(box_x1, box_y1, box_x2 - box_x1, box_y2 - box_y1);
bin_mask.CopyTo(new Mat(mask, rois));
Cv2.Add(rgb_mask, new Scalar(rd.Next(0, 255), rd.Next(0, 255), rd.Next(0, 255)), rgb_mask, mask);
Cv2.Rectangle(image, position_boxes[index], new Scalar(0, 0, 255), 2, LineTypes.Link8);
Cv2.Rectangle(image, new Point(position_boxes[index].TopLeft.X, position_boxes[index].TopLeft.Y - 20),
new Point(position_boxes[index].BottomRight.X, position_boxes[index].TopLeft.Y), new Scalar(0, 255, 255), -1);
Cv2.PutText(image, classes_names[class_ids[index]] + "-" + confidences[index].ToString("0.00"),
new Point(position_boxes[index].X, position_boxes[index].Y - 10),
HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
Cv2.AddWeighted(image, 0.5, rgb_mask.Clone(), 0.5, 0, masked_img);
}
Cv2.ImShow("Result", masked_img);
Cv2.WaitKey(5000);
}
}
}