- 博客(5)
- 收藏
- 关注
原创 #交通大模型与时序大模型整理
本文系统梳理了交通领域大模型与时间序列大模型的最新研究进展。随着大语言模型(LLMs)在多个领域的成功应用,其在交通系统建模和时序数据分析中的潜力逐渐显现。
2025-09-10 17:17:40
755
原创 大模型案例实战 - 模块一:大模型基础操作说明书
本文介绍了大模型的基础知识和实战操作。大模型由参数文件和运行时文件组成,通过海量数据和计算资源训练,在NLP和CV领域表现优异。重点讲解了大模型分词器的作用,将文本转换为数字token以便模型处理。同时介绍了大模型推理流程和Hugging Face的pipeline工具,简化了文本分类、生成等任务的操作步骤。最后通过代码案例演示了如何加载BERT模型并查看其参数结构,帮助读者理解大模型的组成和工作原理。
2025-09-10 13:30:50
538
原创 物理信息神经网络(PINNs)在交通运输领域的应用
物理信息神经网络(PINNs)在交通运输领域的应用研究结合了数据驱动与物理模型约束,通过嵌入交通流守恒定律等物理信息,显著提升了交通状态估计与预测的精度。该技术仅需少量观测数据(流量、速度、密度等),即可实现高精度建模,尤其适用于数据稀疏场景。研究重点包括:交通状态估计与预测、参数辨识、交通控制优化等领域,同时面临计算成本高、物理模型依赖性等挑战。未来需解决大规模异构数据处理问题,以进一步推动智能交通系统发展。
2025-09-09 21:58:22
318
原创 大模型入门初级教程
本文介绍了一门"从基础到进阶的大模型实操课程"大纲。该课程采用100个实操案例,分10个模块循序渐进地教授大模型(LLM)技术及应用。模块涵盖:基础与环境搭建、文本生成、提示工程、向量检索、RAG与工具调用、微调与LoRA、对齐与RLHF、评估优化、部署安全及前沿专题。每个模块包含10个实践案例,如模型加载、创意写作、语义搜索、RLHF优化等,结合最新技术如模型合并、多模态等。课程注重动手实践,帮助学员从理论到应用全面掌握大模型技术。
2025-09-09 10:58:51
1060
原创 物理信息神经网络PINN实例及其Python实现
物理信息神经网络(PINN)是一种融合深度学习与物理定律的新型机器学习模型。它通过将物理方程(PDE/ODE)作为约束条件融入神经网络的损失函数,实现了数据拟合与物理规律的双重满足。与传统神经网络相比,PINN具有更强的泛化能力和物理可解释性。其核心技术包括自动微分、多组件损失函数(数据损失+物理损失+边界条件损失)和全连接网络架构。PINN在科学计算中展现出独特优势,能有效解决复杂物理系统的建模问题,尤其适用于数据稀疏或噪声大的场景。该模型由Maziar Raissi等人于2019年首次系统提出,为物理系
2025-09-08 17:16:45
1092
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人