自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 #交通大模型与时序大模型整理

本文系统梳理了交通领域大模型与时间序列大模型的最新研究进展。随着大语言模型(LLMs)在多个领域的成功应用,其在交通系统建模和时序数据分析中的潜力逐渐显现。

2025-09-10 17:17:40 755

原创 大模型案例实战 - 模块一:大模型基础操作说明书

本文介绍了大模型的基础知识和实战操作。大模型由参数文件和运行时文件组成,通过海量数据和计算资源训练,在NLP和CV领域表现优异。重点讲解了大模型分词器的作用,将文本转换为数字token以便模型处理。同时介绍了大模型推理流程和Hugging Face的pipeline工具,简化了文本分类、生成等任务的操作步骤。最后通过代码案例演示了如何加载BERT模型并查看其参数结构,帮助读者理解大模型的组成和工作原理。

2025-09-10 13:30:50 538

原创 物理信息神经网络(PINNs)在交通运输领域的应用

物理信息神经网络(PINNs)在交通运输领域的应用研究结合了数据驱动与物理模型约束,通过嵌入交通流守恒定律等物理信息,显著提升了交通状态估计与预测的精度。该技术仅需少量观测数据(流量、速度、密度等),即可实现高精度建模,尤其适用于数据稀疏场景。研究重点包括:交通状态估计与预测、参数辨识、交通控制优化等领域,同时面临计算成本高、物理模型依赖性等挑战。未来需解决大规模异构数据处理问题,以进一步推动智能交通系统发展。

2025-09-09 21:58:22 318

原创 大模型入门初级教程

本文介绍了一门"从基础到进阶的大模型实操课程"大纲。该课程采用100个实操案例,分10个模块循序渐进地教授大模型(LLM)技术及应用。模块涵盖:基础与环境搭建、文本生成、提示工程、向量检索、RAG与工具调用、微调与LoRA、对齐与RLHF、评估优化、部署安全及前沿专题。每个模块包含10个实践案例,如模型加载、创意写作、语义搜索、RLHF优化等,结合最新技术如模型合并、多模态等。课程注重动手实践,帮助学员从理论到应用全面掌握大模型技术。

2025-09-09 10:58:51 1060

原创 物理信息神经网络PINN实例及其Python实现

物理信息神经网络(PINN)是一种融合深度学习与物理定律的新型机器学习模型。它通过将物理方程(PDE/ODE)作为约束条件融入神经网络的损失函数,实现了数据拟合与物理规律的双重满足。与传统神经网络相比,PINN具有更强的泛化能力和物理可解释性。其核心技术包括自动微分、多组件损失函数(数据损失+物理损失+边界条件损失)和全连接网络架构。PINN在科学计算中展现出独特优势,能有效解决复杂物理系统的建模问题,尤其适用于数据稀疏或噪声大的场景。该模型由Maziar Raissi等人于2019年首次系统提出,为物理系

2025-09-08 17:16:45 1092

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除