2.1 图像的读取,显示和保存实验代码2025/3/12
2.1 使用OpenCV库读取图片形状
import cv2 # 导入 OpenCV 库,用于图像处理
# 以默认方式读取图像(即彩色模式),返回一个多维数组
img1 = cv2.imread("tk14.bmp")
# 以灰度模式读取同一张图像,返回一个二维数组(高,宽)
img2 = cv2.imread("tk14.bmp", 0)
# 打印两个图像的尺寸信息(即数组形状)
print(img1.shape, "", img2.shape)
输出的结果如下:
2.2 使用 matplotlib 读取图像,并输出图像的形状。
import matplotlib.pyplot as plt # 导入 matplotlib 库中的 pyplot 模块,用于图像显示与读取
# 使用 matplotlib 的 imread 函数读取图像
img = plt.imread("tk14.jpg")
# 打印图像的尺寸信息(shape)
print(img.shape)
输出结果如下:
2.3 使用 OpenCV 来读取并显示图像:
import cv2 # 导入 OpenCV 库
# 使用 OpenCV 的 imread 函数读取图像(默认以 BGR 彩色方式读取)
img = cv2.imread("tk14.jpg")
# 使用 OpenCV 的 imshow 函数在一个窗口中显示图像
cv2.imshow("tk14", img)
# waitKey(0) 表示程序会等待用户按下任意键再继续运行(单位是毫秒)
# 如果参数为 0,则无限等待;如果是正数,则等待指定的毫秒数后自动继续
cv2.waitKey(0)
2.4 使用 matplotlib 显示图像
import matplotlib.pyplot as plt
# 导入 matplotlib 库的 pyplot 模块
# 使用 matplotlib 读取图像(会自动以 RGB 方式读取)
img = plt.imread("tk14.jpg")
# 使用 imshow 显示图像
plt.imshow(img)
# 设置图像标题
plt.title("img")
# 显示图像窗口
plt.show()
显示图片效果如下:
2.5 用 matplotlib 显示图像处理的效果对比:左边显示原图,右边显示像素值加 10 后的图像。
import matplotlib.pyplot as plt # 导入 matplotlib 的绘图模块
# 读取图像,返回 RGB 格式的数组(如果是 JPG,数据类型通常是 uint8)
img = plt.imread("tk14.jpg")
# 对原图像素进行处理:所有像素值 +10
img1 = img + 10
# 创建子图窗口:1 行 2 列,第 1 个子图
plt.subplot(121)
plt.imshow(img) # 显示原图
plt.title("original")
# 第 2 个子图
plt.subplot(122)
plt.imshow(img1) # 显示处理后的图像
plt.title("processed")
# 显示窗口
plt.show()
左右对比图如下:
2.6 使用 OpenCV 读取的图像转换为 RGB 格式
import cv2 # 导入 OpenCV 库,用于图像读取和处理
import matplotlib.pyplot as plt # 导入 Matplotlib,用于图像显示
# 用 OpenCV 读取图像,默认以 BGR 彩色格式读取
img = cv2.imread("tk14.jpg")
# 将 BGR 转换为 RGB,因为 Matplotlib 显示图像使用的是 RGB 顺序
img1 = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
# 使用 Matplotlib 显示图像
plt.imshow(img1) # 显示图像(RGB 格式)
vedio_teacher_version.py 实验(用 OpenCV 从摄像头捕获视频流并显示出来,用户可以按下 空格键保存当前帧为图像文件,也可以按下 Esc 键退出循环。)
import cv2
# 创建视频捕获对象,参数0表示使用内置摄像头
capture = cv2.VideoCapture(0)
while True:
# 获取视频帧
ref, frame = capture.read()
# 检查是否成功获取帧
if not ref:
print("无法读取视频帧")
break
# 显示当前帧
cv2.imshow("captureSrc", frame)
# 等待100ms,检查用户是否按下“Esc”键
k = cv2.waitKey(100)
if k == 27: # 如果按下ESC键,退出循环
break
elif k == 32: # 如果按下空格键,保存当前帧
cv2.imwrite('img.jpg', frame) # 将当前帧保存到硬盘
# 释放捕获对象和关闭所有窗口
capture.release()
cv2.destroyAllWindows()