wandb训练模型报API错误

wandb是一个强大的参数可视化工具,适用于多种框架如TensorFlow和Pytorch。当遇到'W&Amp;BAPIkeyisconfigured'错误时,可通过在代码中设置API key或在命令行登录来解决。具体操作包括在代码开头设置环境变量或使用`wandblogin`命令重新登录,并输入API授权码。这样做能确保模型训练记录的集中管理和高效复现。
摘要由CSDN通过智能技术生成

1. 什么是wandb?

wandb是Weight & Bias的缩写,一句话,它是一个参数可视化平台
wandb强大的兼容性,它能够和Jupyter、TensorFlow、Pytorch、Keras、Scikit、fast.ai、LightGBM、XGBoost一起结合使用。

特点:

  1. 复现模型:Wandb更有利于复现模型。
    这是因为Wandb不仅记录指标,还会记录超参数和代码版本。
  2. 自动上传云端:
    如果你把项目交给同事或者要去度假,Wandb可以让你便捷地查看你制作的所有模型,你就不必花费大量时间来重新运行旧实验。
  3. 快速、灵活的集成:
    只需5分钟即可把Wandb加到自己的项目。
    下载Wandb免费的开源Python包,然后在代码中插入几行,以后你每次运行模型都会得到记录完备的指标和 记录。
  4. 集中式指示板:
    Wandb提供同样的集中式指示板。不管在哪里训练模型,不管是在本地机器、实验室集群还是在云端实例;
    这样就不必花时间从别的机器上复制TensorBoard文件。
  5. 强大的表格:
    对不同模型的结果进行搜索、筛选、分类和分组。
    可以轻而易举地查看成千上万个模型版本,并找到不同任务的最佳模型。
    而TensorBoard本身不适合大型项目。

2. 问题描述

今天在用训练模型时,早上还好好的,下午就报了以下错误:

wandb: W&B API key is configured (use `wandb login --relogin` to force relogin)

它的错误信息很明确,就是登录的API问题,检查后发现,我之前一直是游客登录,当我在wandb官网用GitHub登录后,再运行就报错了,在对wandb学习后,找到了以下两种解决办法。

3. 解决办法

3.1 在代码中输入API key

将引号内的+替换成wandb官网中你账号的授权码,然后将这一行代码放在train.py程序入口的最前面就行。

os.environ["WANDB_API_KEY"] = '+++++++++++' 

3.2 在命令行登录

  1. 切换到安装wandb的虚拟环境
  2. wandb login 你的API授权码
  3. 若登陆过,需要切换账号,输入wandb login --relogin
  4. 输入API授权码
  5. C:\Users\xiaoming.netrc 中包含你登录的API
  • 4
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值