深度学习基础
Ciligu99
这个作者很懒,什么都没留下…
展开
-
二维卷积
卷积层的运算其实是输入与核数组(卷积核)的互相关运算。 实际上,卷积运算与互相关运算类似。为了得到卷积运算的输出,我们只需将核数组左右翻转并上下翻转,再与输入数组做互相关运算。 可见,卷积运算和互相关运算虽然类似,但如果它们使用相同的核数组,对于同一个输入,输出往往并不相同。 那么,你也许会好奇卷积层为何能使用互相关运算替代卷积运算。其实,在深度学习中核数组都是学出来的: 卷积层无论使用互相关运算或卷积运算都不影响模型预测时的输出。为了解释这一点,假设卷积层使用互相关运算学出下图中的核数组。 设其他条件不变原创 2021-04-11 11:24:06 · 2647 阅读 · 0 评论 -
归一化(标准化)
归一化常见有三种方式: (1)线性归一化 将数据归一化到一个范围 最大值y,和最小值x,即 [x,y] ,一般是 [0,1]. y=(x-min)/(max-min) 推导过程可以用一元方程y=ax+b进行推导: 0 = min *a+b 1=max*a+b ===>a=1/(max-min) ; b = -min/(max - min) ===>y=(x-min)/(max-min) pytorch中transforms中ToTensor就是将数据转成tensor后进行 [0,1] 的标原创 2021-04-10 21:26:09 · 7959 阅读 · 0 评论