第五章 搜索技术

本文探讨了状态空间图的概念,重点介绍了深度优先搜索和宽度优先搜索的区别,以及贪心搜索的策略和局限性。此外,文章还涵盖了启发式搜索的A*算法,以及博弈搜索中的极大极小策略和α-β剪枝技巧。通过实例解析,揭示了这些搜索方法在实际问题中的应用和优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、状态空间图

(深度优先)
1.状态空间图不一定总能画出来,只有两个要素:状态、连接
2.建立状态空间图,需要:
– 定义状态形式
– 定义状态之间的连接的意义
– 定义问题的解的形式(状态解、路线解、最优值解等)
实例:
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

二、搜索方法

1.盲目/通用搜索
主要指:深度优先搜索、宽度优先搜索
在这里插入图片描述
在这里插入图片描述
2.贪心搜索

贪婪搜索策略:总是做出在当前看来最好的选择,或者采用使得当前步骤获利最大的选择,因此也叫做贪婪算法。
– 贪婪搜索策略不考虑整体最优,仅求取局部最优。因而也可以看作是一种“盲目”的策略。
– 贪婪搜索不能保证得到最优解,但搜索速度非常块。
– 对一些特定问题很有效。

总结:
深度、宽度优先搜索通用性强,但效率慢
贪婪搜索速度非常块,但基本上找不“准”

3.启发式搜索
3.1 A算法
在这里插入图片描述3.2 A算法*

在这里插入图片描述

4.博弈搜索
4.1 极大极小博弈
我得分最多就是你得分最少
4.2 固定深度博弈
注意:宽度优先
考虑若干步的极大极小博弈
在这里插入图片描述

4.3 α-β剪枝
注意:深度优先

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aJupyter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值