java数据结构与算法——树结构实际应用

堆排序

  1. 堆排序是利用堆这种数据结构而设计的一种排序算法,堆排序是一种选择排序,它的最坏,最好,平均时间复杂度均为O(nlogn),它也是不稳定排序。
  2. 堆是具有以下性质的完全二叉树:每个结点的值都大于或等于其左右孩子结点的值,称为大顶堆, 注意 : 没有要求结点的左孩子的值和右孩子的值的大小关系。
  3. 每个结点的值都小于或等于其左右孩子结点的值,称为小顶堆
    在这里插入图片描述
    在这里插入图片描述

堆排序的基本思想是:

  1. 将待排序序列构造成一个大顶堆
    此时,整个序列的最大值就是堆顶的根节点。
  2. 将其与末尾元素进行交换,此时末尾就为最大值。
  3. 然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。

在构建大顶堆的过程中,元素的个数逐渐减少,最后就得到一个有序序列了.

代码实现

public class HeapSort {
    public static void main(String[] args) {
        //要求将数组进行升序排序
        //int arr[] = {4, 6, 8, 5, 9};
        // 创建要给80000个的随机的数组
        int[] arr = new int[8000000];
        for (int i = 0; i < 8000000; i++) {
            arr[i] = (int) (Math.random() * 8000000); // 生成一个[0, 8000000) 数
        }

        System.out.println("排序前");
        Date data1 = new Date();
        SimpleDateFormat simpleDateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        String date1Str = simpleDateFormat.format(data1);

        heapSort(arr);

        Date data2 = new Date();
        String date2Str = simpleDateFormat.format(data2);
        //System.out.println("排序后=" + Arrays.toString(arr));
        int millssecond = (int) (data2.getTime() - data1.getTime());
        System.out.println("用时"+ millssecond + "毫秒");
    }

    //编写一个堆排序的方法
    public static void heapSort(int arr[]) {
        int temp = 0;
        System.out.println("堆排序!!");

//		//分步完成
//		adjustHeap(arr, 1, arr.length);
//		System.out.println("第一次" + Arrays.toString(arr)); // 4, 9, 8, 5, 6
//
//		adjustHeap(arr, 0, arr.length);
//		System.out.println("第2次" + Arrays.toString(arr)); // 9,6,8,5,4

        //完成我们最终代码
        //将无序序列构建成一个堆,根据升序降序需求选择大顶堆或小顶堆
        for(int i = arr.length / 2 -1; i >=0; i--) {
            adjustHeap(arr, i, arr.length);
        }

		/*
		 * 2).将堆顶元素与末尾元素交换,将最大元素"沉"到数组末端;
  			3).重新调整结构,使其满足堆定义,然后继续交换堆顶元素与当前末尾元素,反复执行调整+交换步骤,直到整个序列有序。
		 */
        for(int j = arr.length-1;j >0; j--) {
            //交换
            temp = arr[j];
            arr[j] = arr[0];
            arr[0] = temp;
            adjustHeap(arr, 0, j);
        }

        //System.out.println("数组=" + Arrays.toString(arr));

    }

    //将一个数组(二叉树), 调整成一个大顶堆
    /**
     * 功能: 完成 将 以 i 对应的非叶子结点的树调整成大顶堆
     * 举例  int arr[] = {4, 6, 8, 5, 9}; => i = 1 => adjustHeap => 得到 {4, 9, 8, 5, 6}
     * 如果我们再次调用  adjustHeap 传入的是 i = 0 => 得到 {4, 9, 8, 5, 6} => {9,6,8,5, 4}
     * @param arr 待调整的数组
     * @param i 表示非叶子结点在数组中索引
     * @param length 表示对多少个元素继续调整, length 是在逐渐的减少
     */
    public  static void adjustHeap(int arr[], int i, int length) {

        int temp = arr[i];//先取出当前元素的值,保存在临时变量
        //开始调整
        //说明
        //1. k = i * 2 + 1 k 是 i结点的左子结点
        for(int k = i * 2 + 1; k < length; k = k * 2 + 1) {
            if(k+1 < length && arr[k] < arr[k+1]) { //说明左子结点的值小于右子结点的值
                k++; // k 指向右子结点
            }
            if(arr[k] > temp) { //如果子结点大于父结点
                arr[i] = arr[k]; //把较大的值赋给当前结点
                i = k; //!!! i 指向 k,继续循环比较
            } else {
                break;//!
            }
        }
        //当for 循环结束后,我们已经将以i 为父结点的树的最大值,放在了 最顶(局部)
        arr[i] = temp;//将temp值放到调整后的位置
    }
}

赫夫曼树

给定n个权值作为n个叶子结点,构造一棵二叉树,若该树的带权路径长度(wpl)达到最小,称这样的二叉树为最优二叉树,也称为哈夫曼树(Huffman Tree)。
赫夫曼树是带权路径长度最短的树,权值较大的结点离根较近。

  1. 路径和路径长度:在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径。通路中分支的数目称为路径长度。若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1
  2. 结点的权及带权路径长度:若将树中结点赋给一个有着某种含义的数值,则这个数值称为该结点的权。结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积
  3. 树的带权路径长度:树的带权路径长度规定为所有叶子结点的带权路径长度之和,记为WPL(weighted path length) ,权值越大的结点离根结点越近的二叉树才是最优二叉树。
  4. WPL最小的就是赫夫曼树

构建赫夫曼树

有一个数列{13, 7, 8, 3, 29, 6, 1}

  1. 从小到大进行排序, 将每一个数据,每个数据都是一个节点 , 每个节点可以看成是一颗最简单的二叉树
  2. 取出根节点权值最小的两颗二叉树
  3. 组成一颗新的二叉树, 该新的二叉树的根节点的权值是前面两颗二叉树根节点权值的和
  4. 再将这颗新的二叉树,以根节点的权值大小 再次排序, 不断重复 1-2-3-4 的步骤,直到数列中,所有的数据都被处理,就得到一颗赫夫曼树

代码实现

public class HuffmanTree {

	public static void main(String[] args) {
		int arr[] = { 13, 7, 8, 3, 29, 6, 1 };
		Node root = createHuffmanTree(arr);
		
		//测试
		preOrder(root); 
		
	}
	
	//编写一个前序遍历的方法
	public static void preOrder(Node root) {
		if(root != null) {
			root.preOrder();
		}else{
			System.out.println("是空树,不能遍历~~");
		}
	}

	// 创建赫夫曼树的方法
	/**
	 * 
	 * @param arr 需要创建成哈夫曼树的数组
	 * @return 创建好后的赫夫曼树的root结点
	 */
	public static Node createHuffmanTree(int[] arr) {
		// 第一步为了操作方便
		// 1. 遍历 arr 数组
		// 2. 将arr的每个元素构成成一个Node
		// 3. 将Node 放入到ArrayList中
		List<Node> nodes = new ArrayList<Node>();
		for (int value : arr) {
			nodes.add(new Node(value));
		}
		
		//我们处理的过程是一个循环的过程
		
		
		while(nodes.size() > 1) {
		
			//排序 从小到大 
			Collections.sort(nodes);
			
			System.out.println("nodes =" + nodes);
			
			//取出根节点权值最小的两颗二叉树 
			//(1) 取出权值最小的结点(二叉树)
			Node leftNode = nodes.get(0);
			//(2) 取出权值第二小的结点(二叉树)
			Node rightNode = nodes.get(1);
			
			//(3)构建一颗新的二叉树
			Node parent = new Node(leftNode.value + rightNode.value);
			parent.left = leftNode;
			parent.right = rightNode;
			
			//(4)从ArrayList删除处理过的二叉树
			nodes.remove(leftNode);
			nodes.remove(rightNode);
			//(5)将parent加入到nodes
			nodes.add(parent);
		}
		
		//返回哈夫曼树的root结点
		return nodes.get(0);
		
	}
}

// 创建结点类
// 为了让Node 对象持续排序Collections集合排序
// 让Node 实现Comparable接口
class Node implements Comparable<Node> {
	int value; // 结点权值
	char c; //字符
	Node left; // 指向左子结点
	Node right; // 指向右子结点

	//写一个前序遍历
	public void preOrder() {
		System.out.println(this);
		if(this.left != null) {
			this.left.preOrder();
		}
		if(this.right != null) {
			this.right.preOrder();
		}
	}
	
	public Node(int value) {
		this.value = value;
	}

	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	@Override
	public int compareTo(Node o) {
		// TODO Auto-generated method stub
		// 表示从小到大排序
		return this.value - o.value;
	}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值