2021-2022年度第三届全国大学生算法设计与编程挑战赛(夏季赛)
主要是用于记录涉及的知识点,本次比赛是团队赛。
http://oj.saikr.com/contest/20/problems
部分题目讲解视频:
https://edu.saikr.com/course/957/task/5879/show
文章目录
B、Path
问题:
地上存在着一个 n \times nn×n 的地图,地图中包括两种字符,PP 和 NN, 其中 PP 表示该处可以通过,NN 表示该处不可以通过。
游戏规定:Makik 需要进行多次滑动。每次滑动选择一个 P 作为自己的起点,从起点出发,并沿着一个方向(上下左右)前进,前进的同时需要保证
- 不能走到 NN 的格子上
- 不能走出 n \times nn×n 的地图
- 不能中途改变方向。
当一次滑动结束时,Makik 可以开始选择下一个 P 并开始下一次滑动直到地图中不存在 PP, 游戏结束。
为了增加游戏的趣味性,每经过一个格子,这个格子就会从 PP 变成 NN。
米忽悠为了让游戏充满挑战性,进行的滑动的次数越少,得到的奖励越多,现在 Makik 想要拿到最高等级的奖励,来抽取小吉祥草王,所以他把地图交给了你,请你好好研究下怎么解决这个问题。
Input
第一行一个数字 nn 表示正方形地图的边长
接下来 nn 行,每行 1 个长度为 nn 的字符串,由 NN 和 PP 组成。
Output
一行一个数字,表示最少需要的滑动次数。
Sample Input 1
2
PN
NP
Sample Output 1
2
Sample Input 2
5
PNNPN
PNPPP
NPPPP
PNNNP
PNNNP
Sample Output 2
6
Hint 数据规模
n≤50
解题思路:
属于网络流问题,问题在于怎么防止在某个点转向
将横纵拆开,设立源点S,汇点T。
C、Square
枚举分割线,DP即可
相同的题:
https://codeforces.com/contest/1404/problem/E
D、Poly
也涉及了枚举
F、String
问题:
Makik 在上次的比赛后沉迷原神,现在要向你展示他给史莱姆排队的能力。
具体而言,我们用一个大写字母来表示一种史莱姆,同种史莱姆之间没有区别,这里我们认为共有 26 种不同类型的史莱姆。
Makik 有一个已经排好队的史莱姆序列 B, 现在又给了你一个还没排好队的史莱姆序列 A, 请问最少多少次操作能把 A 排成 B呢?
这个问题太简单了,所以 Makik 加了个限制条件:
每次移动 A 中的史莱姆的时候,只能将想要移动的史莱姆从原来的位置移动到队头,也就是第一个史莱姆的前面。
请问在这个限制下,最少多少次操作可以将 A 排成 B 呢?
Input
第一行一个数字 nn, 表示史莱姆序列的长度。
接下来一行 nn 个大写字母组成的字符串,表示史莱姆序列 A。
再接下来一行 nn 个大些字母组成的字符串,表示史莱姆序列 B。
Output
一行一个数字,表示最少需要的操作次数。
Sample Input 1
10
SIAJOIWUGB
IBUSJGWAOI
Sample Output 1
7
Hint
1≤n≤10**6 , 数据保证至少存在一种方法将 AA 排成 BB。
解题思路:
以B的最后一个字符倒序开始找连续的字符串在A中相同出现顺序的最长长度,一定要以B的最后一个字符开始。
#include <iostream>
using namespace std;
char a[1000005];
char b[1000005];
int n;
int main()
{
cin >> n;
for(int i=0;i<n;i++){
cin >> a[i];
}
for(int i=0;i<n;i++){
cin >> b[i];
}
int ar,br=n-1;
int bl;
int min0=n;
int count=0;
bl=br;
ar=n;
while(ar>=0){
if (b[bl]==a[ar]){
bl--;
count++;
}
ar--;
if (bl<0){
break;
}
}
cout << n-count << endl;
return 0;
}
G、Rev
循环卷积,给定卷积后的结果,求符合条件的对称序列
I、Tree
有多少种本质不同的树上递增路径
度数写到节点上,不妨看为由度数作为一个广义字符的后缀树
问题转化为求本质不同的子串
后缀自动机
J、大富翁
问题:
机会卡描述如下:你会来到一个给定的街道,街道上一共有无限个店家相连,因此可以把街道看作是一个一维的数列,街道的前n个店有一个数值a_ia**i,表示你可以选择走到后面的0-a_i0−a**i个店,比如你当前在1号店,店的数值为3,则你选择可以走到1,2,3,4号店,越到后面的店的奖励越好,所以你想知道这样最远能走到哪一家店。
Input
第一行一个整数nn,表示有n家店(1 \leq n \leq 100000)(1≤n≤100000)第二行n个整数,表示每个店的数值a_ia**i(0 \leq a_i \leq 100000)(0≤a**i≤100000)
Output
一个整数x,表示能走到的最远的店
Sample Input 1
5
1 1 1 1 1
Sample Output 1
6
解题思路:
虽然这题没做完,但是有一定的想法。
从后往前将每个位置的值和最后一个位置的位置进行差分后排序,就知道哪个是走出最后一个有值的位置最远的点,然后看能不能从起点到达这个max的位置,如果不行就换成次的,直到找到能抵达的点。至于怎么看能不能从起点到这个点,也是倒着推的思想,先将max前的点的值与max的位置进行差分,选择差分在正的范围中里max最远的点,再以这个新点开始重复刚才的操作直到能不能到起点。但是这个做法似乎不是很靠谱。
#include <iostream>
#include <algorithm>
using namespace std;
struct tmp1
{
int pos;
int ai;
}aa[100002];
struct tmp2
{
int pos;
//用来记倒叙的位置
int pos_n;
//用来记录与最后一个店的差值
int bi;
}bb[100002];
int cmp(const tmp &, const tmp &);
//定义排序规则
int cmp(const tmp &s1, const tmp &s2)
{
//从大到小排序
return s1.bi > s2.bi;
}
int n;
int main()
{
cin >> n;
for (int i=0;i<n;i++){
aa[0].pos=i;
bb[0].pos=i;
bb[0].pos_n=n-1-i;
cin >> aa[0].ai;
bb[0].bi=aa[0].ai-bb[0].pos_n;
}
//按照差值降序
sort(bb,bb+n,cmp);
// for (int i=0;i<n;i++){
// cout << aa[i].bi << endl;
// }
int m=0;
while(m<n){
int max_pos=bb[m].pos;
for (int i=0;i<n;i++){
//没写完
}
m++;
}
return 0;
}