UVA-10305-Ordering-Tasks-DAG-拓扑排序

题目大意原题链接

        给n个任务(编号1,2,···,n)和m个任务次序关系,后一个任务必须在前一个任务完成后才能进行,解出任意一个可能的任务完成次序。

        例:有5个任务,4个次序关系为:1->2、2->3、1->3、1->5。其中一个可能的完成序列为1 4 2 5 3。

理论基础 

        :图中只有第一个和最后一个顶点重复的非空路径。

        DAG:即有向无环图(又称拓扑图)。图中不存在环的有向图。

        拓扑序列:DAG(若图中有环,则不可能存在拓扑序列,就像贪吃蛇不能吃到自己的尾巴)的全部结点的线性序列,对于图中的每条边 (u, v),u在序列中都出现在v之前。结合题目来说,结点就是任务,边就是任务次序关系,所谓拓扑序列就是按任务次序关系能排列起来的一个任务序列

        拓扑排序:求解拓扑序列的过程。首先输出图中一个入度为0的结点,删除此结点的所有边,重复直到所有可能的结点被输出。若结束后若还有结点未输出,即图存在环(拓扑序列不存在)。可以用DFS(DFS详见链接,输出为逆序)实现。

解题思路 

        将问题转换为有向图,任务当结点,次序当边,进行拓扑排序即可,输出任意一个可能的拓扑序列。

参考代码 

#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 100
using namespace std;

int G[maxn][maxn], n, m; //邻接矩阵
void eliedge(int node, int *in, int *out) {
	for (int i = 0; i < n; i++)
		if (G[node][i]) {
			G[node][i] = 0;
			in[i]--;
		}
}

int main() {
	while (scanf("%d%d", &n, &m) && n) {
		int in[maxn] = {0}, out[maxn] = {0}, vis[maxn] = {0}, found = 1; //分别结点存储入度和出度
		int flag = 0;
		for (int i = 0; i < m; i++) {
			int x, y;
			scanf("%d%d", &x, &y);
			x--, y--;
			G[x][y] = 1;
			out[x]++;//统计出入度
			in[y]++;
		}

		while (found) {
			found = 0;
			for (int i = 0; i < n; i++)
				if (!(vis[i] + in[i])) {//寻找入度为0的结点
					found = 1;//标记已找到的结点
					vis[i] = 1;
					eliedge(i, in, out); //清除结点i的所有边,并更新邻接点的入度
					if (flag)
						printf(" %d", i + 1);
					else {
						flag = 1;
						printf("%d", i + 1);
					}
				}
		}
		putchar('\n');
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

✷大傻瓜✷

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值