题目大意原题链接
给n个任务(编号1,2,···,n)和m个任务次序关系,后一个任务必须在前一个任务完成后才能进行,解出任意一个可能的任务完成次序。
例:有5个任务,4个次序关系为:1->2、2->3、1->3、1->5。其中一个可能的完成序列为1 4 2 5 3。
理论基础
环:图中只有第一个和最后一个顶点重复的非空路径。
DAG:即有向无环图(又称拓扑图)。图中不存在环的有向图。
拓扑序列:DAG(若图中有环,则不可能存在拓扑序列,就像贪吃蛇不能吃到自己的尾巴)的全部结点的线性序列,对于图中的每条边 (u, v),u在序列中都出现在v之前。结合题目来说,结点就是任务,边就是任务次序关系,所谓拓扑序列就是按任务次序关系能排列起来的一个任务序列。
拓扑排序:求解拓扑序列的过程。首先输出图中一个入度为0的结点,删除此结点的所有边,重复直到所有可能的结点被输出。若结束后若还有结点未输出,即图存在环(拓扑序列不存在)。可以用DFS(DFS详见链接,输出为逆序)实现。
解题思路
将问题转换为有向图,任务当结点,次序当边,进行拓扑排序即可,输出任意一个可能的拓扑序列。
参考代码
#include<cstdio>
#include<cstring>
#include<iostream>
#define maxn 100
using namespace std;
int G[maxn][maxn], n, m; //邻接矩阵
void eliedge(int node, int *in, int *out) {
for (int i = 0; i < n; i++)
if (G[node][i]) {
G[node][i] = 0;
in[i]--;
}
}
int main() {
while (scanf("%d%d", &n, &m) && n) {
int in[maxn] = {0}, out[maxn] = {0}, vis[maxn] = {0}, found = 1; //分别结点存储入度和出度
int flag = 0;
for (int i = 0; i < m; i++) {
int x, y;
scanf("%d%d", &x, &y);
x--, y--;
G[x][y] = 1;
out[x]++;//统计出入度
in[y]++;
}
while (found) {
found = 0;
for (int i = 0; i < n; i++)
if (!(vis[i] + in[i])) {//寻找入度为0的结点
found = 1;//标记已找到的结点
vis[i] = 1;
eliedge(i, in, out); //清除结点i的所有边,并更新邻接点的入度
if (flag)
printf(" %d", i + 1);
else {
flag = 1;
printf("%d", i + 1);
}
}
}
putchar('\n');
}
return 0;
}