Ubuntu 22.04安装nvidia-container-toolkit

英伟达官网手册:https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html#installation
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html

一、 nvidia-container-toolkit 是什么?

NVIDIA Container Toolkit 使用户能够构建和运行 GPU 加速容器。该工具包包括一个容器运行时库和实用程序,用于自动配置容器以利用 NVIDIA GPU。
在这里插入图片描述

二、安装nvidia-container-toolkit

你需要先安装好docker和nvidia驱动

1. 配置存储库

英伟达官方存储库配置:
curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list |
sed ‘s#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g’ |
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

由于官网的放在github上,访问很慢所以这里使用国内的存储库,中科大的。

curl -fsSL https://mirrors.ustc.edu.cn/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://mirrors.ustc.edu.cn/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://nvidia.github.io#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://mirrors.ustc.edu.cn#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list

2. 更新软件包列表

apt-get update

3. 安装nvidia-container-toolkit

sudo apt-get install -y nvidia-container-toolkit

4. 验证安装

nvidia-container-cli  --version

三、 配置

1. 配置docker

使用 nvidia-ctk 命令配置容器运行时:

该命令用于配置 Docker 以使用 NVIDIA 容器运行时。具体来说,它会修改 /etc/docker/daemon.json 文件,将 NVIDIA 容器运行时设置为 Docker 的默认运行时
配置 Docker 使用 NVIDIA 容器运行时:这允许 Docker 容器访问和利用 NVIDIA GPU 资源,从而支持 GPU 加速。
修改 /etc/docker/daemon.json 文件:该命令会将 NVIDIA 容器运行时的配置信息写入 Docker 的配置文件中。

$ sudo nvidia-ctk runtime configure --runtime=docker
INFO[0000] Loading config from /etc/docker/daemon.json
INFO[0000] Wrote updated config to /etc/docker/daemon.json
INFO[0000] It is recommended that docker daemon be restarted.

重启docker

systemctl restart docker
$ cat /etc/docker/daemon.json
    "runtimes": {
        "nvidia": {
            "args": [],
            "path": "nvidia-container-runtime"
        }
    }
}

查看docker 支持的运行时有没有nvidia

 $ docker info | grep Runtimes
 Runtimes: nvidia runc io.containerd.runc.v2

四、 启动容器运行 nvidia-smi 查看效果

$ sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
  • --runtime=nvidia : 指定容器运行时
  • --gpus all:请求所有可用的 GPU 资源
  • nvidia-smi:查看 NVIDIA GPU 的状态信息,包括 GPU 使用率、内存使用情况等
$ sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi
Thu Feb 13 09:05:55 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.120                Driver Version: 550.120        CUDA Version: 12.4     |
|-----------------------------------------+------------------------+----------------------+
| GPU  Name                 Persistence-M | Bus-Id          Disp.A | Volatile Uncorr. ECC |
| Fan  Temp   Perf          Pwr:Usage/Cap |           Memory-Usage | GPU-Util  Compute M. |
|                                         |                        |               MIG M. |
|=========================================+========================+======================|
|   0  NVIDIA A800 80GB PCIe          Off |   00000000:34:00.0 Off |                    0 |
| N/A   35C    P0             51W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   1  NVIDIA A800 80GB PCIe          Off |   00000000:35:00.0 Off |                    0 |
| N/A   36C    P0             52W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   2  NVIDIA A800 80GB PCIe          Off |   00000000:36:00.0 Off |                    0 |
| N/A   36C    P0             50W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   3  NVIDIA A800 80GB PCIe          Off |   00000000:37:00.0 Off |                    0 |
| N/A   36C    P0             52W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   4  NVIDIA A800 80GB PCIe          Off |   00000000:9B:00.0 Off |                    0 |
| N/A   34C    P0             50W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   5  NVIDIA A800 80GB PCIe          Off |   00000000:9C:00.0 Off |                    0 |
| N/A   35C    P0             51W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   6  NVIDIA A800 80GB PCIe          Off |   00000000:9D:00.0 Off |                    0 |
| N/A   35C    P0             49W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+
|   7  NVIDIA A800 80GB PCIe          Off |   00000000:9E:00.0 Off |                    0 |
| N/A   35C    P0             53W /  300W |       1MiB /  81920MiB |      0%      Default |
|                                         |                        |             Disabled |
+-----------------------------------------+------------------------+----------------------+

+-----------------------------------------------------------------------------------------+
| Processes:                                                                              |
|  GPU   GI   CI        PID   Type   Process name                              GPU Memory |
|        ID   ID                                                               Usage      |
|=========================================================================================|
|  No running processes found                                                             |
+-----------------------------------------------------------------------------------------+
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值