洛谷P5658 [CSP-S2019] 括号树 题解

这篇博客介绍了洛谷P5658题目的解决方案,通过动态规划和括号栈技巧解决括号匹配问题。关键在于理解每个右括号对左括号的贡献并递推,同时利用栈来维护括号层次结构。代码展示了如何在回溯过程中保护括号栈,实现高效求解。
摘要由CSDN通过智能技术生成

洛谷P5658 [CSP-S2019] 括号树 题解

题目链接:P5658 [CSP-S2019] 括号树

题意:略。

注意到本题中,链的部分分很高,就先考虑这种情况

不难发现,每个与 l l l 配对的右括号 r r r 的贡献为 d p [ r ] = d p [ l − 1 ] + 1 = d p [ f a [ l ] ] + 1 dp[r]=dp[l-1]+1 = dp[fa[l]]+1 dp[r]=dp[l1]+1=dp[fa[l]]+1

k i = d p [ i ] + ∑ d p [ j ] k_i = dp[i] + \sum dp[j] ki=dp[i]+dp[j] j j j i i i 的祖先结点

显然这个性质可以推广到树上

这样维护一个括号栈就好了,怎么维护呢?

为了防止栈在回溯过程中被破坏,考虑回溯时执行相反操作

代码:

#include <bits/stdc++.h>
using namespace std;
#define int long long
#define INF 0x3f3f3f3f3f3f3f3f
#define N (int)(5e5+15)

int n,fa[N],sum[N];
char val[N];
struct Edge
{
    int u,v,next;
}e[N];
int pos=1,head[N],dp[N],stk[N],top;
void addEdge(int u,int v)
{
    e[++pos]={u,v,head[u]};
    head[u]=pos;
}
void dfs(int u)
{
    int t=0;
    if(val[u]==')')
    {
        if(top)
        {
            t=stk[top--];
            dp[u]=dp[fa[t]]+1;
        }
    }else stk[++top]=u;
    sum[u]=sum[fa[u]]+dp[u];
    for(int i=head[u]; i; i=e[i].next)
        dfs(e[i].v);
    if(t)stk[++top]=t;
    else if(top)--top;
}
signed main()
{
    ios::sync_with_stdio(0);
    cin.tie(0);cout.tie(0);
    // freopen("check.in","r",stdin);
    // freopen("check.out","w",stdout);
    cin >> n >> (val+1);
    for(int i=2; i<=n; i++)
    {
        cin >> fa[i];
        addEdge(fa[i],i);
    }
    dfs(1);int res=0;
    for(int i=1; i<=n; i++)
        res^=i*sum[i];
    cout << res;
    return 0;
}

转载请说明出处

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值