基本需求
需要python>=3.8和pip即可,剩下的环境搭建需求已经被列在即将下载的文件中的‘./requirements.txt’中了,当然需要注意的是,如果你的电脑上被安装了很多的python版本,还请确定一下你使用的是否是正确的那一款
这里我比较推荐使用anaconda创建虚拟环境,具体的anaconda的安装和创建虚拟环境的内容还请参考以下援引的部分博主的blog:
关于anaconda的安装
(3条消息) 史上最全最详细的Anaconda安装教程_OSurer的博客-CSDN博客_anaconda清华镜像下载安装教程
只需要看前几部分即可,更换源只是为了能够下载的更快
关于anaconda如和创建虚拟环境以及激活虚拟环境
(3条消息) Anaconda创建虚拟环境_HDD615的博客-CSDN博客_anaconda创建虚拟环境
安装
打开cmd并调整到你想要安装yolov5的虚拟环境下,并在cmd中执行以下命令
获得yolov5的安装包:
$ git clone https://github.com/ultralytics/yolov5.git
当然你也可以直接从我共享的百度网盘下载,下载连接和提取码如下:(包含yolov5s.pt)
链接:https://pan.baidu.com/s/1DvCCv-DZVPWRkiceBLntBg
提取码:i313
*如果使用的是我提供的yolov5的包,记得解压在你用cmd正在操作的文件夹中,并将解压后的文件夹重命名为“yolov5”
进入yolov5的文件夹
$ cd yolov5
安装yolov5需要的前置库文件
$ pip install -r requirements.txt
使用yolov5去检测目标——detect的应用
在cmd中运行以下代码以进行检测,一定要要保证cmd是在打开yolov5的文件夹内工作的。运动该程序结束以后,运行的结果会被储存在"./runs/detect"文件夹中
$ python detect.py --source OPTION
使用以下罗列的关键字语句替换OPTION可以切换不同的检测对象:
Webcam : (OPTION = 0) For live object detection from your connected webcam 用于从连接的网络摄像头检测实时对象
Image : (OPTION = filename.jpg) Create a copy of the image with an object detection overlay
创建一个带有对象检测覆盖的图像副本
Video : (OPTION = filename.mp4) Create a copy of the video with an object detection overlay 创建一个带有对象检测覆盖的视频副本
Directory : (OPTION = directory_name/) Create a copy of all file with an object detection overlay 使用对象检测为所有文件创建一个副本
Global File Type (OPTION = directory_name/*.jpg) Create a copy of all file with an object detection overlay 用对象检测覆盖创建所有文件的副本
RTSP stream : (OPTION = rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa) For live object detection from a stream 用于从流中检测实时对象
RTMP stream : (OPTION = rtmp://192.168.1.105/live/test) For live object detection from a stream 用于从流中检测实时对象
HTTP stream : (OPTION = http://112.50.243.8/PLTV/88888888/224/3221225900/1.m3u8) For live object detection from a stream 用于从流中检测实时对象
The following file formats are currently supported:
以下是目前支持识别的文件格式
Images: bmp, jpg, jpeg, png, tif, tiff, dng, webp, mpo
Videos: mov, avi, mp4, mpg, mpeg, m4v, wmv, mkv
下一期: