【高质量】2024五一数学建模B题保奖思路+代码(后续会更新)

你的点赞收藏,是我继续更新的最大动力

一定要点击文末的卡片,那是获取资料的入口!

【全网最全】2024五一数学建模B题前四问代码多种保奖进阶思路+建模过程+代码+数据处理+论文写作技巧等(后续会更新)「首先来看看目前已有的资料,还会不断更新哦~一次购买,后续不会再被收费哦,保证是全网最全资源,随着后续内容更新,价格会上涨,越早购买,价格越低,让大家再也不需要到处买断片资料啦~💰💸👋」👋👋👋重磅更新:matlab+python代码+数据 icon-default.png?t=N7T8https://mbd.pub/o/bread/mbd-ZpWWm5dq

B题 未来新城背景下的交通需求规划与可达率问题

随着城市化的持续发展,交通规划在新兴城市建设中显得尤为关键。在未来新城规划中,自动驾驶技术预期将成为交通出行的主导模式,彻底改变出行方式和城市规划的基础理念。自动驾驶车辆,得益于先进的传感器、智能算法和通信技术,能够自动遵循预设路线,无需人为操作。将自动驾驶技术整合到一个特定未来新城的交通需求规划中,以期实现更高效、更可持续的城市交通网络。

交通需求指从特定起点出发,到达指定终点的交通量(车辆数)。以图1中的交通网络1为例,假设(起点,终点)对(1,4)的交通需求为100辆,其中40辆分配到路径1-2-4,60辆车分配到路径1-3-4,该过程称为交通需求分配。在道路完全通畅的情况下,从起点1到达终点4的交通量比例(以下称为“可达率”)为(40+60)/100=100%。而一旦产生突发状况,例如路段1-2发生了交通事故导致该路段无法通行,那么原本选择通过1-2-4路径的交通需求将无法满足。此时,只有通过路径1-3-4的交通需求才能够被实现,交通需求可达率为60/100=60%。

假设每个(起点,终点)对之间使用的路径数不超过5(各路段长度均为单位1,优先选择距离短的路径)。假设交通网络中所有车辆均为无人驾驶车辆,并且所有车辆都服从系统预先规划的路径进行出行。注意:本题的图2和图3中的路段为双向路段,即路段2-3和路段3-2是两条不同的路段。在本题中,不要求交通流量值取整数,即交通流量值可以为任意的非负实数。请依据附件1~3,建立数学模型,完成以下问题:

问题1:图2为一个小型交通网络。各(起点,终点)对之间的交通需求见附件1。请建立数学模型,给出各(起点,终点)对之间交通需求分配到对应路径上的交通量,使得网络中任意1条路段出现突发状况时(每个路段出现突发状况概率相同),网络中所有交通需求的期望可达率最大。在表1中填入指定(起点,终点)对规划的路径,以及对应分配的交通量(若规划路径数不足5条无需填满表格)。

问题2:在图3所示的交通网络中,各(起点,终点)对之间的交通需求见附件2。请建立数学模型,给出各(起点,终点)对之间交通需求分配到对应路径上的交通量,使得网络中任意5条路段出现突发状况时(每个路段出现突发状况概率相同),网络中所有交通需求的期望可达率最大。在表2中填入指定(起点,终点)对规划的路径,以及对应分配的交通量(若规划路径数不足5条无需填满表格)。

问题3:在交通网络3中,各(起点,终点)对之间的交通需求见附件2,各路段的容量上限见附件3。请建立数学模型,给出各(起点,终点)对之间交通需求分配到对应路径上的交通量,使得网络中任意5条路段出现突发状况时(每个路段出现突发状况概率相同),网络中所有交通需求的期望可达率最大,且交通需求分配到对应的路径后,各路段上的交通量不能超过路段容量(路段交通量计算方法:路段交通量=经过该路段的路径交通量之和。例如,路径1-0-6与路径1-0-3均经过路段1-0,则路段1-0交通量=路径1-0-6交通量+路径1-0-3交通量)。在表3中填入指定(起点,终点)对规划的路径,以及对应分配的交通量(若规划路径数不足5条无需填满表格)。

问题4:现计划在交通网络3中新修建6条路段(单向直线路段且长度为单位1,例如节点31至节点32),新建路段起点和终点必须是交通网络中的任意两个节点,并且假设新建路段的容量足够大。新建路段不能跨越其他路段(例如,不能在节点21与节点39之间修建路段),只能在网络内部修建(例如,不能在节点4与节点34之间修建路段)。请建立数学模型,给出新修建路段方案,使得在新网络中任意5条路段出现突发事故时(包括新建路段,每个路段出现突发状况概率相同),网络中所有交通需求的期望可达率尽可能最大,且交通需求分配到对应的路径后,各路段上的交通量不能超过路段容量(新建路段容量足够大,不用考虑这个因素)。在表4中填入期望可达率最大的5种方案及其可达率。

问题一分析:

问题一是要我们针对一个小型的交通网络进行数学建模,目的是分配(起点,终点)对之间的交通需求到各条可能的路径上。这种分配需要优化以确保在任何一条路段出现突发状况时(如交通事故使得路段不可用),整个网络中所有的交通需求的期望可达率最大化。换句话说,你需要为每一对起始和结束的节点规划路线,并分配相应的交通量,以使网络的韧性最大化,从而面对任何单一路段故障时,仍能满足尽可能多的交通需求。

考虑如下几个因素:

  1. 每个(起点,终点)对间使用的路径数不超过5。
  2. 所有车辆都遵循系统预先规划好的路径进行出行。
  3. 交通流量值可以是任意非负实数。

该问题可以利用图论、网络流和运筹学中的相关技术来解决。以下是可能使用的几种算法:

  • 最短路径算法:如Dijkstra算法或Bellman-Ford算法,找到两点间的所有可能最短路径。
  • 多路径路由算法:如K最短路径算法(K Shortest Path Algorithm)或Yen's算法,获取两点间的前K条最短路径。
  • 网络流优化算法:最大流最小割定理及其算法(如Ford-Fulkerson算法,Edmonds-Karp算法)可以用于找到最佳路径流量分配。
  • 线性规划(Linear Programming, LP):定义目标函数为最大化期望可达率,约束条件包含了路径选择、流量非负以及交通量分配。此方法可能需要借助软件工具如LINGO或Gurobi解决。
  • 随机规划(Stochastic Programming):考虑到路段出现突发状况的概率相同,可以构建一个包含随机变量的优化模型。
  • 遗传算法:对于复杂和非线性的优化问题,遗传算法可以通过模仿自然选择的机制,在解空间中搜索最优解。

作为第一步,最好建立一个清晰的问题描述,明确定义决策变量、目标函数和约束条件。然后,可以选择合适的算法或方法组合。

首先,我们要分析赛题所提供信息:

  • 交通网络是由路段和节点组成的图 ( G = (V, E) )。
  • 起点集合 ( O ) 和终点集合 ( D )。
  • 各起点-终点对的交通需求量 ( T_{od} )。
  • 路径数限制为最多5。

步骤 2: 建立决策变量

我们定义一个决策变量 ( x_{odk} ),代表从起点 ( o ) 出发到终点 ( d ) 在路径 ( k ) 上的流量。这个变量是非负实数。

步骤 3: 目标函数构建

目标函数是( \max \sum_{o \in O} \sum_{d \in D} R_{od} ),我们需要最大化整个网络中所有交通需求的期望可达率。

计算每对起点-终点之间期望可达率 ( R_{od} ) 的具体方法需进一步明确。理论上,我们可以假设在正常情况下,每条路径都是完全可达的(( r_{odk} = 1 ))。然而,当某条路段出现故障时,该路段上的所有路径不可达(( r_{odk} = 0 ))。问题描述中提到“任意1条路段出现突发状况时(每个路段出现突发状况概率相同)”,这暗示了我们可能需要考虑所有单一路段故障的情境,并按照它们的概率加权计算期望可达率。

步骤 4: 约束条件建立

接下来,我们要构建约束条件:

  1. 交通需求的满足: [ \forall (o, d) \in O \times D, \sum_{k=1}^{K} x_{odk} = T_{od} ]
  2. 非负流量: [ \forall (o, d) \in O \times D, \forall k \in {1, ..., K}, x_{odk} \geq 0 ]
  3. 路段容量限制(对于问题三): [ \forall e \in E, \sum_{\substack{(o, d) \ e \in P_{od}}} \sum_{k=1}^{K} x_{odk} \leq {C_e} ]

步骤 5: 求解模型

这是一个典型的优化问题,结合运筹学和网络流理论,我们可以通过多种方法来求解:

  • 使用线性规划软件(如 Gurobi、CPLEX 或 LINGO)直接求解上述模型。
  • 设计遗传算法或其他启发式算法来搜索近似最优解。
  • 网络流优化,针对此可以考虑利用现有库,如 NetworkX (Python库) 中的最大流算法

步骤 6: 实施算法

根据选择的算法或工具的特点,编写代码实施算法,输入得到的数据,并求解模型。

  • ( i, j ):表示节点的下标,如果存在一条路段连接节点 ( i ) 和 ( j ),则 ( (i, j) \in E )。
  • ( O ):表示起点的集合,( O \subseteq V )。
  • ( D ):表示终点的集合,( D \subseteq V )。
  • ( P_{od} ):表示从起点 ( o \in O ) 到终点 ( d \in D ) 的所有可能路径的集合。
  • ( k ):表示路径的编号,对每个起点-终点对 ( (o, d) ),可能的路径不超过5,即 ( k = 1, 2, ..., K ),其中 ( K \leq 5 )。
  • ( x_{odk} ):非负实数变量,表示分配给第 ( k ) 条路径的从起点 ( o ) 到终点 ( d ) 的交通流量。
  • ( T_{od} ):已知参数,表示从起点 ( o ) 到终点 ( d ) 的总交通需求量。
  • ( r_{odk} ):表示路径 ( k ) 的可达率,即在产生突发状况时该路径能满足交通需求的概率。
  • ( R_{od} ):表示从起点 ( o ) 到终点 ( d ) 的期望可达率,计算公式可能包含路径 ( k ) 的可达率 ( r_{odk} ) 与分配交通量 ( x_{odk} )。

目的是最大化整个网络中所有交通需求的期望可达率,可以用以下公式表示:

[ \max \sum_{o \in O} \sum_{d \in D} R_{od} ]

该优化问题还需要包括下列约束条件:

  1. 路径选择的约束: [ \forall (o, d), \sum_{k=1}^{K} x_{odk} = T_{od} ]
  2. 分配的交通量应非负: [ \forall (o, d), \forall k, x_{odk} \geq 0 ]
  3. 每条路段的流量不能超出其容量(问题三中提及): [ \forall e \in E, \sum_{\substack{(o, d) \ e \in P_{od}}} \sum_{k=1}^{K} x_{odk} \leq {C_e} ] 其中 ( C_e ) 表示路段 ( e ) 的容量。
import pulp
from itertools import product

# 假设已经从给定的数据中解析出了起点集合O、终点集合D、路段集合E及其容量C_e和各(起点, 终点)对之间的交通需求T_od
# 以及所有可能的路径P_odk和它们的可达率r_odk(根据突发情况的发生概率和路径上是否包含受影响的路段)

# 示例数据结构,实际应该基于附件的数据解析填充这些变量
V = [1, 2, 3, 4] # 节点集合示例
E = [(1, 2), (2, 3), (3, 4)] # 路段集合示例
O = {1, 2} # 起点集合示例
D = {3, 4} # 终点集合示例
P_od = {
    (1, 3): [[(1, 2), (2, 3)]], # 路径示例
    (2, 4): [[(2, 3), (3, 4)]],
}
C_e = {(1, 2): 100, (2, 3): 150, (3, 4): 200} # 路段容量示例
T_od = {(1, 3): 50, (2, 4): 70} # 交通需求示例
r_odk = {
    (1, 3): [1], # 可达率示例
    (2, 4): [1],
}

# 定义线性规划问题
model = pulp.LpProblem("Maximize_Expected_Reachability", pulp.LpMaximize)

# 定义决策变量x_odk
x_odk = {}
for o, d in product(O, D):
    k = 0
    for path in P_od.get((o, d), []):
        x_odk[o, d, k] = pulp.LpVariable(f"x_{o}_{d}_{k}", lowBound=0)
        k += 1

# 目标函数:最大化期望可达率
objective = sum(r_odk[o, d][k] * x_odk[o, d, k] for o, d, k in x_odk)
model += objective

# 约束条件1:每个起点-终点对的需求必须得到满足
for o, d in T_od:
    model += (
        pulp.lpSum(x_odk.get((o, d, k), 0) for k in range(len(P_od.get((o, d), [])))) == T_od[o, d]
    ), f"Demand_Constraint_{o}_{d}"

# 纔束条件2:每条路段的流量不能超出其容量
for e in E:
    paths_through_e = [(o, d, k) for o, d, k in x_odk if e in P_od.get((o, d), [])[k]]
    model += (
        pulp.lpSum(x_odk[path] for path in paths_through_e) <= C_e[e]
    ), f"Capacity_Constraint_{e}"

# 求解线性规划问题
model.solve()

# 输出结果
if model.status == pulp.LpStatusOptimal:
    print("Optimal Solution Found:\n")
    for var in x_odk:
        print(f"{var}: {x_odk[var].varValue}")
else:
    print("An optimal solution cannot be found.")
  • 28
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值