新版ERA5数据下载方法(2024.10)

1.地址

ERA5 hourly data on pressure levels from 1940 to present (copernicus.eu)

更新cdsapi库、更新token(新版和旧版的token不一致)

2.选择变量、时间、空间、格式

也可以直接提交表单,从浏览器下载。完整代码:

import cdsapi

dataset = "reanalysis-era5-pressure-levels"
request = {
    "product_type": ["reanalysis"],
    "variable": [
        "u_component_of_wind",
        "v_component_of_wind"
    ],
    "year": ["2022"],
    "month": [
        "01", "02", "03",
        "04", "05", "06",
        "07", "08", "09",
        "10", "11", "12"
    ],
    "day": [
        "01", "02", "03",
        "04", "05", "06",
        "07", "08", "09",
        "10", "11", "12",
        "13", "14", "15",
        "16", "17", "18",
        "19", "20", "21",
        "22", "23", "24",
        "25", "26", "27",
        "28", "29", "30",
        "31"
    ],
    "time": [
        "00:00", "01:00", "02:00",
        "03:00", "04:00", "05:00",
        "06:00", "07:00", "08:00",
        "09:00", "10:00", "11:00",
        "12:00", "13:00", "14:00",
        "15:00", "16:00", "17:00",
        "18:00", "19:00", "20:00",
        "21:00", "22:00", "23:00"
    ],
    "pressure_level": ["1000"],
    "data_format": "netcdf",
    "download_format": "unarchived",
    "area": [35, 118, 31, 122]
}
target = "2020_wind.nc" #此处修改文件名称、后缀
client = cdsapi.Client()
client.retrieve(dataset, request).download()

完毕!

好的,这是一个比较复杂的问题,需要讲解一些基础知识和编写代码。我会一步一步地为您讲解。 首先,我们需要了解一下 LSTM 模型。LSTM 全称为 Long Short-Term Memory,是一种常用于序列数据的深度学习模型。与传统的 RNN 模型相比,LSTM 能够更好地处理长序列数据,避免了梯度消失等问题。因此,LSTM 在自然语言处理、语音识别、股票预测等领域都有广泛的应用。 接下来,我们需要了解一下 TensorFlow 的基本用法。TensorFlow 是谷歌开发的一个深度学习框架,可以帮助我们构建神经网络模型并进行训练和预测。在使用 TensorFlow 之前,我们需要安装 TensorFlow 库,并导入相关模块: ```python import tensorflow as tf from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential from sklearn.preprocessing import MinMaxScaler import netCDF4 as nc import numpy as np ``` 其中,`LSTM`、`Dense` 和 `Sequential` 分别代表 LSTM 层、全连接层和序列模型。`MinMaxScaler` 是 sklearn 中的数据归一化函数,`netCDF4` 是 Python 中处理 netcdf 格式数据的库,`numpy` 是 Python 中的科学计算库。 下一步,我们需要读取并处理数据。我们使用 `netCDF4` 库读取 ERA5 再分析资料数据,将温度数据提取出来,并将其归一化处理: ```python file = nc.Dataset('data.nc', 'r') temp = file.variables['t'][:, :, :, :] temp = np.array(temp) temp = np.reshape(temp, [-1, 24]) scaler = MinMaxScaler(feature_range=(0, 1)) temp = scaler.fit_transform(temp) ``` 其中,`file.variables['t']` 是读取 `data.nc` 文件中的温度数据,`np.reshape` 将数据形状从 `(n, 30, 24, 1)` 转换为 `(n*30, 24)`,其中 `n` 表示样本数。`scaler.fit_transform` 将数据归一化到 `[0, 1]` 的范围内。 接下来,我们需要将数据划分为训练集和测试集,并将其转换为 LSTM 模型的输入格式: ```python train_data = temp[:20*30, :] test_data = temp[20*30:, :] x_train = [] y_train = [] x_test = [] y_test = [] for i in range(6, 20*30): x_train.append(train_data[i-6:i, :]) y_train.append(train_data[i, 0]) for i in range(6, 10*24): x_test.append(test_data[i-6:i, :]) y_test.append(test_data[i, 0]) x_train = np.array(x_train) y_train = np.array(y_train) x_test = np.array(x_test) y_test = np.array(y_test) ``` 其中,`x_train` 和 `y_train` 分别是训练集的输入和输出,`x_test` 和 `y_test` 分别是测试集的输入和输出。`x_train` 的形状为 `(20*24-6, 6, 24)`,即 `(样本数, 时间步长, 特征数)`,`y_train` 的形状为 `(20*24-6, )`,即 `(样本数, )`。同理,`x_test` 的形状为 `(10*24-6, 6, 24)`,`y_test` 的形状为 `(10*24-6, )`。 接下来,我们可以构建 LSTM 模型: ```python model = Sequential() model.add(LSTM(64, input_shape=(x_train.shape[1], x_train.shape[2]))) model.add(Dense(1)) model.compile(loss='mse', optimizer='adam') ``` 其中,`Sequential` 表示序列模型,`LSTM(64)` 表示一个包含 64 个神经元的 LSTM 层,`input_shape=(x_train.shape[1], x_train.shape[2])` 表示输入数据的形状为 `(6, 24)`。`Dense(1)` 表示一个输出维度为 1 的全连接层,`loss='mse'` 表示使用均方误差作为损失函数,`optimizer='adam'` 表示使用 Adam 优化器进行训练。 接下来,我们可以使用训练集来训练模型: ```python model.fit(x_train, y_train, epochs=100, batch_size=32) ``` 其中,`epochs=100` 表示训练 100 次,`batch_size=32` 表示每次训练使用的样本数为 32。 最后,我们可以使用测试集来评估模型的性能,并进行反归一化处理: ```python y_pred = model.predict(x_test) y_pred = scaler.inverse_transform(y_pred) y_test = scaler.inverse_transform(y_test.reshape(-1, 1)) ``` 其中,`model.predict` 表示使用测试集进行预测,`scaler.inverse_transform` 表示反归一化处理。 完整代码如下:
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值