树模型:决策树、随机森林(RF)、AdaBoost、GBDT、XGBoost、LightGBM和CatBoost算法区别及联系

本文介绍了决策树、随机森林、AdaBoost、GBDT、XGBoost、LightGBM和CatBoost的发展历程与算法原理。通过对比,展示了不同模型在解决过拟合、提升性能方面的策略,强调了集成学习方法在中小规模数据集上的优势。各个模型各有特点,适用场景各异,选择时需结合实际问题进行验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、算法提出时间

1966年,决策树算法起源于E.B.Hunt等人提出。

1979年,Quinlan(罗斯.昆兰)提出了ID3算法,掀起了决策树研究的高潮,让决策树成为机器学习主流算法。

1993年,Quinlan(罗斯.昆兰)提出了C4.5算法。

1995年,Freund等人提出AdaBoost算法。

1999年,Friedman在其论文中最早提出GBDT。

2001年,Breiman提出随机森林算法

2014 年 3 月,XGBOOST 最早作为研究项目,由陈天奇提

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值