55-II平衡二叉树

文章提供了解决是否为平衡二叉树问题的递归算法,首先通过计算各节点的左右子树深度,如果差值不超过1,则继续递归检查子树;然后展示了代码优化,避免重复计算树的高度,当发现不平衡时立即返回-1。
摘要由CSDN通过智能技术生成

题目

输入一棵二叉树的根节点,判断该树是不是平衡二叉树。如果某二叉树中任意节点的左右子树的深度相差不超过1,那么它就是一棵平衡二叉树。

解题思路

递归判断非叶节点左右子树的高度之差,若相差不超过1,那么它就是一棵平衡二叉树;否则不是

代码

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root==null){
            return true;
        }
        int l=depth(root.left);
        int r=depth(root.right);
        int c=l-r;
        if(c>=-1&&c<=1){
            return isBalanced(root.left)&&isBalanced(root.right);
        }else{
            return false;
        }
    }
    int depth(TreeNode root){
        if(root==null){
            return 0;
        }
        int l=depth(root.left);
        int r=depth(root.right);
        return (l>r?l:r)+1;
    }
}

优化:
因为上面的题解中在计算深度和判断平衡的时候重复计算了树的高度;

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public boolean isBalanced(TreeNode root) {
        if(root==null){
            return true;
        }
        if(depth(root)==-1){
            return false;
        }else{
            return true;
        }
    }
    int depth(TreeNode root){
        if(root==null){
            return 0;
        }
        int l=depth(root.left);
        //返回-1不符合条件,已经不是平衡二叉树了
        if(l==-1)return -1;
        int r=depth(root.right);
        //返回-1不符合条件,已经不是平衡二叉树了
        if(r==-1)return -1;
        //返回-1不符合条件,已经不是平衡二叉树了
        if(Math.abs(l-r)>1)return -1;
        return (l>r?l:r)+1;
    }
     
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值