python----生成器、迭代器

在了解生成器与迭代器之前,先了解一下列表生成式

一、列表生成式

# 示例一
a = [x for x in range(1,11)]
print(a)  # [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 
# 示例二
def f(n):
    return n * 2
 
b = [f(x) for x in range(1,11)]
print(b)   # [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]

        列表生成式能够将列表中的内容展示出来,但是它有一个缺点,不管你取一个还是取全部,它都会将所有的数据都会生成出来,如果数据的量十分巨大的话,就会特别占用内存,所以,就有了生成器。

二、生成器 generator

生成器就是一个可迭代对象

1.通过()来创建生成器

a = (x for x in range(10))
print(a)  # <generator object <genexpr> at 0x00000162C72D9548> 生成器对象以及它所在的地址
print(next(a))  # 它等价于print(a.__next__())  注:在python2中,用s.next() 输出:0
print(next(a))  # 通过next来生成数据  输出:1

2.通过yeild创建

def a():     # 用def定义,利用关键字yield一次性返回一个结果,阻塞,然后重新开始
    print('111')
    yield 1        #yeild在这个地方,作用相当于return
    print('bbb')
    yield 2

b=a()
print(b)   # <generator object a at 0x00000135D4F69548> 说明a()是一个生成器

for i in a():   # 可以通过for循环来取,把生成器中的内容一个一个取出来
    # i = next(a())
    print(i)
    
# 输出: 111
#       1
#       bbb
#       2

3.通过yeild实现单线程下的伪并发状态

import time

def teacher(name):
    print('%s 老师提前到教室' %(name))
    time.sleep(2)
    while True:
        lesson=yield
        if lesson == 0:
            print('%s 老师开始上课了,上第%s节课' % (name,lesson))
            time.sleep(2)
            print('下课!!!!')
            print('现在是课间休息时间')
            time.sleep(2)
        elif lesson == 1:
            print('%s 老师开始上课了,上第%s节课' % (name, lesson))
            time.sleep(2)
            print('下课!!!!')

def student():
    s = teacher('张')

    s.__next__()
    print('学生进教室中!!!!')
    time.sleep(2)
    for i in range(2):
        if i == 0:
            print('一共到了20个人')
            time.sleep(2)
            s.send(i)     # send函数,将数据发送到生成器中
        elif i ==1:
            s2 = teacher('李')
            s2.__next__()
            print('现在来了40个学生')
            time.sleep(2)
            s2.send(i)

student()

# 输出: 张 老师提前到教室
#        学生进教室中!!!!
         一共到了20个人
#        张 老师开始上课了,上第0节课
#        下课!!!!
#        现在是课间休息时间
#        李 老师提前到教室
#        现在来了40个学生
#        李 老师开始上课了,上第1节课
#        下课!!!!

三、迭代器 

1.生成器都是迭代器,迭代器不一定是生成器

2.可作用于for循环的对象都是可迭代对象(iterable),例如:list,tuple,dict,set,str

3.可以被next()函数调用并不断返回下一个值的对象称为迭代器

4.iterator计算是惰性的,需要返回下一个数据时,它才会计算,所以它可以表示自然数整体,如果使用list时无法储存的所有自然数的。

5.用isinstance判断一个对象是否为可迭代对象

from collections.abc import Iterator
from collections.abc import Iterable

a = [1,2,3,4,5,6]
print(isinstance(a,Iterator)) # 判断它是否时迭代器 False
print(isinstance(a,Iterable)) # 判断它是否时可迭代对象 True

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值