2021蓝桥杯省赛 B组 填空题C题:直线(含python和C++两种解法)

题目描述

本题为填空题,只需要算出结果后,在代码中使用输出语句将所填结果输出即可。

在平面直角坐标系中,两点可以确定一条直线。如果有多点在一条直线上, 那么这些点中任意两点确定的直线是同一条。

给定平面上 2 × 3 个整点(x, y)|0 ≤ x < 2, 0 ≤ y < 3, x ∈ Z, y ∈ Z​,即横坐标 是 0 到 1 (包含 0 和 1) 之间的整数、纵坐标是 0 到 2 (包含 0 和 2) 之间的整数的点。这些点一共确定了 11 条不同的直线。

给定平面上 20 × 21个整点 (x, y)|0 ≤ x < 20, 0 ≤ y < 21, x ∈ Z, y ∈ Z,即横 坐标是 0 到 19 (包含 0 和 19) 之间的整数、纵坐标是 0 到 20 (包含 0 和 20​) 之 间的整数的点。

请问这些点一共确定了多少条不同的直线。

运行限制

  • 最大运行时间:1s
  • 最大运行内存: 128M

C++:

#include <bits/stdc++.h>
#define line pair<double, double>
using namespace std;
struct node {
    double x, y;
} p[25 * 25];
set<line> st;
long long ans = 0;
int main() {
    int m = 20, n = 21;
    int cnt = 0;
    for (int i = 0; i < m; i++) {
        for (int j = 0; j < n; j++) {
            p[cnt].x = i;
            p[cnt].y = j;
            cnt++;
        }
    }
    for (int i = 0; i < cnt; i++) {
        for (int j = 0; j < cnt; j++) {
            if (p[i].x == p[j].x || p[i].y == p[j].y)
                continue;
            double k = (p[j].y - p[i].y) / (p[j].x - p[i].x);
            /*不可以写成:double b = p[i].y - k * p[i].x; 造成二次误差
            b = y - k*x
              = y1 - (y2-y1)/(x2-x1) *x1
              = y1(x2-x1) / (x2-x1) - (y2-y1)*x1 / (x2-x1)
              = (y1x2 - y2x1) / (x2-x1)
            */
            double b = (p[j].x * p[i].y - p[j].y * p[i].x) / (p[j].x - p[i].x);
            st.insert({k, b});
        }
    }
    cout << m + n + st.size();
    return 0;
}

因C++无控制double变量小数位数的函数,所以要注意截距b在计算时不可直接用上述算出的k来直接带入计算,因为double本身取值会造成误差,带入计算则会造成二次误差,影响结果。在这里对b的计算进行化简合并:

b = y - k*x = y1 - \frac{\Delta y}{\Delta x} * x1 = \frac{y1*(x2-x1)}{x2-x1} - \frac{x1*(y2-y1)}{x2-x1} = \frac{y1x2-y2x1}{x2-x1}

Python:

因为这题是填空题,我们当然没必要执意使用C++来给自己找麻烦,用python会更加方便

st = set()
p = []
m = 20
n = 21
for i in range(m):
    for j in range(n):
        p.append([i, j])
for i in p:
    for j in p:
        if i[0] == j[0] or i[1] == j[1]:
            continue
        k = (j[1] - i[1]) / (j[0] - i[0])
        b = i[1] - k*i[0]
        k = round(k, 4)  # 保留4位小数
        b = round(b, 4)  # 保留4位小数
        st.add((k, b))
print(m + n + len(st))

<think>好的,我现在需要帮用户解答关于蓝桥杯Python保底分数策略的问。首先,用户可能想知道如何确保在比中获得一定的分数,比如最低的保底分数是多少,或者有什么策略可以在有限时间内尽可能多得分。我需要先回忆蓝桥杯评分标准。 蓝桥杯Python题目通常分为填空题编程填空题一般分值固定,可能每5分,而编程根据测试用例的通过情况给分,比如通过部分用例得部分分数。保底策略的关键可能在于优先解决容易得分的题目,比如先做填空题,因为即使不会编程,有时候填空题可以通过手算或简单代码得出答案。 接下来要考虑的是时间分配。比时间通常是4小时,合理分配时间对保底很重要。比如前1小时解决所有填空题,中间2小时处理编程中较简单的部分,最后1小时攻克难或检查。这样确保基础分拿到手。 另外,Python的特性可能影响策略。比如Python在处理大数运算时比较方便,但性能可能不如C++或Java。因此,在编程中需要注意时间复杂度,避免超时。对于部分得分,即使无法优化到最优解,也要写出能通过部分用例的代码,比如暴力解法,这样也能获得一定分数。 用户可能还关心常见的考点,比如算法数据结构。蓝桥杯常考排序、查找、动态规划、贪心算法等。掌握这些基础算法,并熟悉Python的相关库(如itertools、collections)会有帮助。例如,遇到排列合问可以直接用itertools生成,节编码时间。 此外,代码模板的准备也很重要。提前准备好常见算法的模板,比如DFS、BFS、快速排序等,可以在比中快速修改使用,减少编码时间,避免出错。 还需要提醒用户注意测试用例的调试。编程可能有多输入,要确保代码处理所有情况,特别是边界条件。例如,输入为0或极大值的情况,容易导致错误,需多加测试。 最后,复习历年真是有效的策略。通过练习真,熟悉常考知识点,找到自己的薄弱环节,针对性加强。同时,模拟考试环境,练习时间管理,提高应试能力。 总结起来,保底分数策略包括:优先填空题,合理时间分配,掌握基础算法Python库,准备代码模板,注意部分得分,以及真训练。这些步骤能帮助用户在比中稳定发挥,确保拿到基础分数,再争取更高分。</think># 蓝桥杯Python保底分数策略与备指南 ## 一、基础保底策略(30-50分) 1. **填空题优先** - 数学类填空题可通过枚举/手算求解,例如:$a^2 + b^2 = c^2$ 的整数解问[^1] - 日期计算类问Python的`datetime`模块快速验证 2. **代码填空题技巧** ```python # 示例:求最大公约数(缺失代码处常为1-2行) def gcd(a, b): return a if b == 0 else ______ # 此处通常填gcd(b, a%b) ``` 3. **编程部分得分** - 暴力解法保底:如全排列问直接调用`itertools.permutations` - 特殊测试用例处理:确保边界值(n=0/1)正确性 ## 二、进阶得分策略(50-80分) $$T(n) = O(n^2) \Rightarrow 50\%\text{分数}, \quad T(n) = O(n\log n) \Rightarrow 100\%\text{分数}$$ 1. **高频算法准备** - 排序算法模板(快速排序/归并排序) - DFS/BFS标准框架 - 动态规划经典模型(背包问/最长子序列) 2. **Python特性利用** ```python # 大数运算直接处理 print(2**1000) # 自动支持高精度计算 # 使用collections模块 from collections import defaultdict, deque ``` ## 三、时间分配建议(4小时) | 时间段 | 任务 | 目标分数 | |----------|------------------------------|----------| | 0-60分钟 | 完成所有填空题 | +15-25 | | 60-180分钟 | 编程前5(简单/中等难度) | +30-50 | | 180-240分钟 | 难攻坚与检查 | +10-20 | ## 四、常见扣分点规避 1. **输入输出格式错误** ```python # 严格按题目要求格式 n = int(input()) print(" ".join(map(str, result))) # 注意空格分隔 ``` 2. **超时处理** ```python # 10^5数据规模需O(n)算法 # 用sys.stdin加速输入 import sys for line in sys.stdin: process(line) ``` ## 五、备资源推荐 1. 蓝桥杯官方练习系统(**30天刷计划**) 2. 《算法入门经典》(Python实现版) 3. LeetCode周训练(重点200-600分型)
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

月初XH

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值