昂贵的聘礼
思路:看y总的提高课,自己先想了想,但是不知道区间怎么处理,看完之后豁然开朗,每次只用处理一段区间,依次枚举区间结束之后最短的便是需要的最少花费,需要定义一个虚拟远点,我们用0号点来定义,问题就转化成了0号点到1号点的最短路
具体代码如下
#include<iostream>
#include<cstring>
using namespace std;
const int N = 110, INF = 0x3f3f3f3f;
int n, m;
int g[N][N], level[N];
int dist[N];
bool st[N];
int dijkstra(int down, int up){
memset(dist, 0x3f, sizeof dist);
memset(st, 0, sizeof st);
dist[0] = 0;
for(int i=0; i<n; ++i){
int t = -1;
for(int j=0; j<=n; ++j)
if(!st[j] && (t == -1 || dist[t] > dist[j]))
t = j;
st[t] = true;
for(int j=1; j<=n; ++j)
if(level[j] >= down && level[j] <= up)
dist[j] = min(dist[j], dist[t] + g[t][j]);
}
return dist[1];
}
int main(){
cin >> m >> n;
memset(g, 0x3f, sizeof g);
for(int i=1; i<=n; ++i){
g[i][i] = 0;//把自身距离初始化为0
int price, cnt;
cin >> price >> level[i] >> cnt;
g[0][i] = min(g[0][i], price);//0号点到i号点的距离就是直接买i需要的金币
while(cnt--){
int id, cost;
cin >> id >> cost;
g[id][i] = min(g[id][i], cost);
}
}
int res = INF;
for(int i=level[1] - m; i<=level[1]; ++i) res = min(res, dijkstra(i, i+m));//枚举区间,区间必须包含level[1]不然就不能买1号物品了
cout << res << endl;
return 0;
}