知识图到文本的生成——玖

2021SC@SDUSC

我们继续看train.py中的train()函数,上篇博客分析到了第二层循环,现在继续。

tgt = b.tgt[:,1:].contiguous().view(-1).to(args.device)
l = F.nll_loss(p.contiguous().view(-1,p.size(2)),tgt,ignore_index=1)

.contiguous()函数在第八篇博客中已经分析过,此处不再赘述。

      if args.cl:
        z = z.max(1)[0]
        cl = nn.functional.mse_loss(z,torch.ones_like(z))
        l = l + args.cl*cl
      if args.plan:
        pl = nn.functional.cross_entropy(planlogits.view(-1,planlogits.size(2)),b.sordertgt[0].view(-1),ignore_index=1)
        l = l+ args.plweight*pl
parser.add_argument("-cl",default=None,type=float,help="Coverage loss")
parser.add_argument("-plan",action='store_true',help="plan and write (NOT IMPLEMENTED)")

判断参数是否覆盖损失,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值