torch.multinomial()

文章介绍了PyTorch的tensor.multinomial(1)函数,用于从给定的多项式分布中抽取样本。输入的tensor必须是浮点型且二维,其中第一维表示概率分布,第二维表示样本数。举例说明了如何从五类分布中抽取三个样本,输出结果为对应的类别索引。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

tensor.multinomial(1)是一个PyTorch中的函数,用于从多项式分布中抽取样本。

在使用该函数时,输入的tensor必须满足以下要求:

  1. tensor的数据类型必须是浮点型(float或double),这是因为多项式分布的参数通常是实数。
  2. tensor的维度必须是二维的,其中第一维表示每个样本的概率分布,第二维表示抽取的样本数。例如,如果要从五个类别中抽取三个样本,则tensor的形状应为(5, 3)

举个例子,假设有一个包含五个类别的多项式分布,并想从中抽取三个样本,则可以按如下方式使用tensor.multinomial(1)函数:

import torch

# 定义一个包含五个类别的多项式分布
probs = torch.tensor([0.1, 0.2, 0.3, 0.25, 0.15])

# 将分布转化成二维形式
probs_2d = probs.view(1, -1)

# 抽取三个样本
samples = probs_2d.multinomial(3)

print(samples)


# tensor([[3, 2, 2]])

其中每个数字表示一个抽样结果,它对应着probs中的元素索引。在这个例子中,我们抽取了三个样本,其结果分别为第四、第三和第三个类别。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值