【2025年莆田市第五期C++专项第三轮选拔真题(初中组)】矩阵转换

【2025年莆田市第五期C++专项第三轮选拔真题(初中组)】矩阵转换

题目描述

有一个 n n n m m m 列的矩阵 a i , j a_{i,j} ai,j,你拥有 4 4 4 种技能对矩阵进行操作:

  • 技能 1 1 1:将矩阵顺时针旋转 90 90 90 度;
  • 技能 2 2 2:将矩阵逆时针旋转 90 90 90 度;
  • 技能 3 3 3:将矩阵上下对称翻转;
  • 技能 4 4 4:将矩阵左右对称翻转。

现在要对矩阵进行 t t t 次操作,请输出最终矩阵的状态。

输入格式

第一行,三个整数 n , m , t n,m,t n,m,t,表示对 n n n m m m 列的矩阵进行 t t t 次操作;

接下来 n n n 行,每行 m m m 个整数,表示矩阵的初始状态;

接下来 t t t 行,每行一个整数 q q q,表示对矩阵使用的技能。

输出格式

经过 t t t 次操作后的矩阵状态( n n n m m m 列或 m m m n n n 列),同一行中每两个数之间用一个空格隔开。

样例

2 3 4
1 2 3
4 5 6
1
2
3
4
6 5 4
3 2 1

【样例 1 1 1 解释】

4 4 4 次操作:

第一次操作,执行技能 1 1 1(将矩阵顺时针旋转 90 90 90 度)后,矩阵如下:

4 1
5 2
6 3

第二次操作,执行技能 2 2 2(将矩阵逆时针旋转 90 90 90 度)后,矩阵如下:

1 2 3
4 5 6

第三次操作,执行技能 3 3 3(将矩阵上下对称翻转)后,矩阵如下:

4 5 6
1 2 3

第四次操作,执行技能 4 4 4(将矩阵左右对称翻转)后,矩阵如下:

6 5 4
3 2 1
2 3 4
1 2 3
4 5 6
1
3
2
4
1 2 3
4 5 6

【样例 2 2 2 解释】

4 4 4 次操作:

第一次操作,执行技能 1 1 1(将矩阵顺时针旋转 90 90 90 度)后,矩阵如下:

4 1
5 2
6 3

第二次操作,执行技能 3 3 3(将矩阵上下对称翻转)后,矩阵如下:

6 3
5 2
4 1

第三次操作,执行技能 2 2 2(将矩阵逆时针旋转 90 90 90 度)后,矩阵如下:

3 2 1
6 5 4

第四次操作,执行技能 4 4 4(将矩阵左右对称翻转)后,矩阵如下:

1 2 3
4 5 6

数据范围

对于 20 % 20 \% 20% 的数据, 3 ≤ q ≤ 4 3 \le q \le 4 3q4

对于 50 % 50 \% 50% 的数据, 1 ≤ n , m , t ≤ 100 1 \le n,m,t \le 100 1n,m,t100

对于 100 % 100\% 100% 的数据, 1 ≤ n , m ≤ 1000 1 \le n,m \le 1000 1n,m1000 1 ≤ t ≤ 1 0 4 1 \le t \le 10^4 1t104 1 ≤ q ≤ 4 1 \le q \le 4 1q4 0 ≤ a i , j ≤ 1 0 4 0 \le a_{i,j} \le 10^4 0ai,j104

问题重述

给定一个n×m的矩阵,需要进行t次操作,每次操作可以是四种变换之一。要求输出最终矩阵状态。

解题思路

直接模拟每次操作会导致时间复杂度过高,特别是当t很大时(如1e4次)。我们采用状态跟踪的方法:

  1. 旋转状态:用0-3表示0度、90度、180度、270度旋转
  2. 翻转状态:用布尔值表示是否翻转
  3. 操作影响:
  • 旋转操作只改变旋转状态
  • 翻转操作会改变翻转状态并可能影响旋转状态

代码实现

#include <bits/stdc++.h>
using namespace std;

int n, m, t;
int matrix[1005][1005];
int temp[1005][1005];

// 上下翻转
void flipVertical() {
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m / 2; j++) {
            swap(matrix[i][j], matrix[i][m - j + 1]);
        }
    }
}

// 顺时针旋转90度
void rotateClockwise() {
    swap(n, m);
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            temp[i][j] = matrix[m - j + 1][i];
        }
    }
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            matrix[i][j] = temp[i][j];
        }
    }
}

int main() {
    cin >> n >> m >> t;
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            cin >> matrix[i][j];
        }
    }
    
    int rotation = 0; // 0: 0度, 1: 90度, 2: 180度, 3: 270度
    bool isFlipped = false;
    
    while (t--) {
        int op;
        cin >> op;
        
        if (op == 1) {
            // 顺时针旋转90度
            rotation = (rotation + 1) % 4;
        } else if (op == 2) {
            // 逆时针旋转90度
            rotation = (rotation + 3) % 4;
        } else if (op == 3) {
            // 上下翻转
            isFlipped = !isFlipped;
            if (rotation % 2 == 0) {
                rotation = (rotation + 2) % 4;
            }
        } else if (op == 4) {
            // 左右翻转
            isFlipped = !isFlipped;
            if (rotation % 2 == 1) {
                rotation = (rotation + 2) % 4;
            }
        }
    }
    
    // 应用翻转
    if (isFlipped) {
        flipVertical();
    }
    
    // 应用旋转
    while (rotation--) {
        rotateClockwise();
    }
    
    // 输出结果
    for (int i = 1; i <= n; i++) {
        for (int j = 1; j <= m; j++) {
            cout << matrix[i][j] << " ";
        }
        cout << "\n";
    }
    
    return 0;
}

复杂度分析

  • 时间复杂度:O(nm + t)
    • 输入矩阵:O(nm)
    • 处理t次操作:O(t)
    • 最终变换:O(nm)
  • 空间复杂度:O(nm)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会叫的恐龙

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值