组合数的几种常规求法

求组合数的几种常规方法

在比赛中常用到的几种处理组合数的方法。

1.杨辉三角

利用组合数性质c(n,m)=c(n-1,m)+c(n-1,m-1)与边界条件c(n,0)=c(n,n)=1,在O(n2)的时间复杂度内处理出1-n范围内的所有组合数。

例:给定n,m,k,对于所有的0≤i≤n,0≤j≤min(i,m),求有多少对 (i, j) 满足是c(i,j)是k的倍数。

利用杨辉三角预处理出1-n范围内所有组合数%k的值,再统计出0的个数即可。

void init(){
	for(int i=0;i<=N;i++) c[i][0]=c[i][i]=1;
	for(int i=1;i<=N;i++)
		for(int j=1;j<=i;j++) c[i][j]=c[i-1][j]+c[i-1][j-1];
}

适用条件:数据范围较小时,且单次计算常数小(直接从数组读取),在数据范围较小时是最佳选择。

2.线性递推得同一行的所有组合数

考虑c(n,m)= n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(nm)!n!,c(n,m+1)= n ! ( m + 1 ) ! ( n − m − 1 ) ! \frac{n!}{(m+1)!(n-m-1)!} (m+1)!(nm1)!n!= n − m m + 1 \frac{n-m}{m+1} m+1nm n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(nm)!n!= n − m m + 1 \frac{n-m}{m+1} m+1nmc(n,m),可以得到c(n,m+1)= n − m m + 1 \frac{n-m}{m+1} m+1nmc(n,m),可以以c(n,0)=1为基础在O(n)时间内递推出一行内的所有组合数的值。

void init(){
	c[0]=1;
	for(int i=1;i<=N;i++) c[i]=c[i-1]*(n-i+1)/i;//c(N,i)
}

适用条件:所需求组合数底数固定。

3.组合数取模(模数比较大且为质数时),预处理阶乘与逆元

若需要计算的组合数非常大,例如c(100000,50000)在%1e9+7下的值,采用o(n2)的杨辉三角递推显然行不通,考虑组合数的定义式 n ! m ! ( n − m ) ! \frac{n!}{m!(n-m)!} m!(nm)!n!,可以先O(nlogmod)(mod为膜数)预处理出1-n范围内的所有阶乘与之对应的逆元,处理结束后可以在O(1)的时间内计算出范围内的任意组合数。

ll pow(ll a,ll b){
	ll sum=1;
	while(b){
		if(b&1) sum=sum*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return sum;
}

void init(){
	fac[0]=fac[1]=1;
	for(ll i=2;i<=N;i++){
		fac[i]=fac[i-1]*i%mod;
		inv[i]=pow(fac[i],mod-2);
	}
}

ll c(ll n,ll m){
	return fac[n]*inv[m]%mod*inv[n-m]%mod;
}

适用条件:数据范围较大且模数较大时,但单次计算具有一定常数(还包括取模运算)。

4.组合数取模(模数比较小且为质数时),Lucas定理

若需要计算的环境下膜数非常小,例如求c(n,m)%3,若直接预处理阶乘与逆元,则会发现3!之后处理出来的阶乘数据全部为0,显然得不到结果,而数据范围较大时,采用杨辉三角递推的复杂度也不合适。这时一般采用Lucas定理Lucas(n,m,p)=c(n%p,m%p)*Lucas(n/p,m/p,p)来计算,其中Lucas(n,m,p)表示c(n,m)%p,时间复杂度为O(plogpn)。

ll pow(ll a,ll b){
	ll sum=1;
	while(b){
		if(b&1) sum=sum*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return sum;
}

ll c(ll n,ll m){
	if(n<m) return 0;
	if(m>m-n) m=n-m;
	ll a=1,b=1;
	for(ll i=0;i<m;i++){
		a*=n-i;
		a%=mod;
		b*=i+1;
		b%=mod;
	}
	return a*pow(b,mod-2)%mod;
}

ll lucas(ll n,ll m){
	if(m==0) return 1;
	return lucas(n/mod,m/mod)*c(n%mod,m%mod)%mod;
}

适用条件:数据范围较大且模数较小时,但单次计算具有一定复杂度。

  • 5
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值