【物体识别(人,车)】python实现NN神经网络(二)

python实现NN神经网络(二)

请添加图片描述
与(一)一起已经全部实现
** 希望各位点赞收藏加关注呀!~ **
(用手机打开会有些卡,电脑可以,三个python文件直接运行最后一个即可)

### utils.py



import json
import os
import torch
import random
import xml.etree.ElementTree as ET
import torchvision.transforms.functional as FT

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Label map
voc_labels = ('aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable',
              'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')
label_map = {k: v + 1 for v, k in enumerate(voc_labels)}
label_map['background'] = 0
rev_label_map = {v: k for k, v in label_map.items()}  # Inverse mapping

# Color map for bounding boxes of detected objects from https://sashat.me/2017/01/11/list-of-20-simple-distinct-colors/
distinct_colors = ['#e6194b', '#3cb44b', '#ffe119', '#0082c8', '#f58231', '#911eb4', '#46f0f0', '#f032e6',
                   '#d2f53c', '#fabebe', '#008080', '#000080', '#aa6e28', '#fffac8', '#800000', '#aaffc3', '#808000',
                   '#ffd8b1', '#e6beff', '#808080', '#FFFFFF']
label_color_map = {k: distinct_colors[i] for i, k in enumerate(label_map.keys())}


def parse_annotation(annotation_path):
    tree = ET.parse(annotation_path)
    root = tree.getroot()

    boxes = list()
    labels = list()
    difficulties = list()
    for object in root.iter('object'):

        difficult = int(object.find('difficult').text == '1')

        label = object.find('name').text.lower().strip()
        if label not in label_map:
            continue

        bbox = object.find('bndbox')
        xmin = int(bbox.find('xmin').text) - 1
        ymin = int(bbox.find('ymin').text) - 1
        xmax = int(bbox.find('xmax').text) - 1
        ymax = int(bbox.find('ymax').text) - 1

        boxes.append([xmin, ymin, xmax, ymax])
        labels.append(label_map[label])
        difficulties.append(difficult)

    return {'boxes': boxes, 'labels': labels, 'difficulties': difficulties}


def create_data_lists(voc07_path, voc12_path, output_folder):
    """
    Create lists of images, the bounding boxes and labels of the objects in these images, and save these to file.

    :param voc07_path: path to the 'VOC2007' folder
    :param voc12_path: path to the 'VOC2012' folder
    :param output_folder: folder where the JSONs must be saved
    """
    voc07_path = os.path.abspath(voc07_path)
    voc12_path = os.path.abspath(voc12_path)

    train_images = list()
    train_objects = list()
    n_objects = 0

    # Training data
    for path in [voc07_path, voc12_path]:

        # Find IDs of images in training data
        with open(os.path.join(path, 'ImageSets/Main/trainval.txt')) as f:
            ids = f.read().splitlines()

        for id in ids:
            # Parse annotation's XML file
            objects = parse_annotation(os.path.join(path, 'Annotations', id + '.xml'))
            if len(objects['boxes']) == 0:
                continue
            n_objects += len(objects)
            train_objects.append(objects)
            train_images.append(os.path.join(path, 'JPEGImages', id + '.jpg'))

    assert len(train_objects) == len(train_images)

    # Save to file
    with open(os.path.join(output_folder, 'TRAIN_images.json'), 'w') as j:
        json.dump(train_images, j)
    with open(os.path.join(output_folder, 'TRAIN_objects.json'), 'w') as j:
        json.dump(train_objects, j)
    with open(os.path.join(output_folder, 'label_map.json'), 'w') as j:
        json.dump(label_map, j)  # save label map too

    print('\nThere are %d training images containing a total of %d objects. Files have been saved to %s.' % (
        len(train_images), n_objects, os.path.abspath(output_folder)))

    # Test data
    test_images = list()
    test_objects = list()
    n_objects = 0

    # Find IDs of images in the test data
    with open(os.path.join(voc07_path, 'ImageSets/Main/test.txt')) as f:
        ids = f.read().splitlines()

    for id in ids:
        # Parse annotation's XML file
        objects = parse_annotation(os.path.join(voc07_path, 'Annotations', id + '.xml'))
        if len(objects) == 0:
            continue
        test_objects.append(objects)
        n_objects += len(objects)
        test_images.append(os.path.join(voc07_path, 'JPEGImages', id + '.jpg'))

    assert len(test_objects) == len(test_images)

    # Save to file
    with open(os.path.join(output_folder, 'TEST_images.json'), 'w') as j:
        json.dump(test_images, j)
    with open(os.path.join(output_folder, 'TEST_objects.json'), 'w') as j:
        json.dump(test_objects, j)

    print('\nThere are %d test images containing a total of %d objects. Files have been saved to %s.' % (
        len(test_images), n_objects, os.path.abspath(output_folder)))


def decimate(tensor, m):
    """
    Decimate a tensor by a factor 'm', i.e. downsample by keeping every 'm'th value.

    This is used when we convert FC layers to equivalent Convolutional layers, BUT of a smaller size.

    :param tensor: tensor to be decimated
    :param m: list of decimation factors for each dimension of the tensor; None if not to be decimated along a dimension
    :return: decimated tensor
    """
    assert tensor.dim() == len(m)
    for d in range(tensor.dim()):
        if m[d] is not None:
            tensor = tensor.index_select(dim=d,
                                         index=torch.arange(start=0, end=tensor.size(d), step=m[d]).long())

    return tensor


def calculate_mAP(det_boxes, det_labels, det_scores, true_boxes, true_labels, true_difficulties):
    """
    Calculate the Mean Average Precision (mAP) of detected objects.

    See https://medium.com/@jonathan_hui/map-mean-average-precision-for-object-detection-45c121a31173 for an explanation

    :param det_boxes: list of tensors, one tensor for each image containing detected objects' bounding boxes
    :param det_labels: list of tensors, one tensor for each image containing detected objects' labels
    :param det_scores: list of tensors, one tensor for each image containing detected objects' labels' scores
    :param true_boxes: list of tensors, one tensor for each image containing actual objects' bounding boxes
    :param true_labels: list of tensors, one tensor for each image containing actual objects' labels
    :param true_difficulties: list of tensors, one tensor for each image containing actual objects' difficulty (0 or 1)
    :return: list of average precisions for all classes, mean average precision (mAP)
    """
    assert len(det_boxes) == len(det_labels) == len(det_scores) == len(true_boxes) == len(
        true_labels) == len(
        true_difficulties)  # these are all lists of tensors of the same length, i.e. number of images
    n_classes = len(label_map)

    # Store all (true) objects in a single continuous tensor while keeping track of the image it is from
    true_images = list()
    for i in range(len(true_labels)):
        true_images.extend([i] * true_labels[i].size(0))
    true_images = torch.LongTensor(true_images).to(
        device)  # (n_objects), n_objects is the total no. of objects across all images
    true_boxes = torch.cat(true_boxes, dim=0)  # (n_objects, 4)
    true_labels = torch.cat(true_labels, dim=0)  # (n_objects)
    true_difficulties = torch.cat(true_difficulties, dim=0)  # (n_objects)

    assert true_images.size(0) == true_boxes.size(0) == true_labels.size(0)

    # Store all detections in a single continuous tensor while keeping track of the image it is from
    det_images = list()
    for i in range(len(det_labels)):
        det_images.extend([i] * det_labels[i].size(0))
    det_images = torch.LongTensor(det_images).to(device)  # (n_detections)
    det_boxes = torch.cat(det_boxes, dim=0)  # (n_detections, 4)
    det_labels = torch.cat(det_labels, dim=0)  # (n_detections)
    det_scores = torch.cat(det_scores, dim=0)  # (n_detections)

    assert det_images.size(0) == det_boxes.size(0) == det_labels.size(0) == det_scores.size(0)

    # Calculate APs for each class (except background)
    average_precisions = torch.zeros((n_classes - 1), dtype=torch.float)  # (n_classes - 1)
    for c in range(1, n_classes):
        # Extract only objects with this class
        true_class_images = true_images[true_labels == c]  # (n_class_objects)
        true_class_boxes = true_boxes[true_labels == c]  # (n_class_objects, 4)
        true_class_difficulties = true_difficulties[true_labels == c]  # (n_class_objects)
        n_easy_class_objects = (1 - true_class_difficulties).sum().item()  # ignore difficult objects

        # Keep track of which true objects with this class have already been 'detected'
        # So far, none
        true_class_boxes_detected = torch.zeros((true_class_difficulties.size(0)), dtype=torch.uint8).to(
            device)  # (n_class_objects)

        # Extract only detections with this class
        det_class_images = det_images[det_labels == c]  # (n_class_detections)
        det_class_boxes = det_boxes[det_labels == c]  # (n_class_detections, 4)
        det_class_scores = det_scores[det_labels == c]  # (n_class_detections)
        n_class_detections = det_class_boxes.size(0)
        if n_class_detections == 0:
            continue

        # Sort detections in decreasing order of confidence/scores
        det_class_scores, sort_ind = torch.sort(det_class_scores, dim=0, descending=True)  # (n_class_detections)
        det_class_images = det_class_images[sort_ind]  # (n_class_detections)
        det_class_boxes = det_class_boxes[sort_ind]  # (n_class_detections, 4)

        # In the order of decreasing scores, check if true or false positive
        true_positives = torch.zeros((n_class_detections), dtype=torch.float).to(device)  # (n_class_detections)
        false_positives = torch.zeros((n_class_detections), dtype=torch.float).to(device)  # (n_class_detections)
        for d in range(n_class_detections):
            this_detection_box = det_class_boxes[d].unsqueeze(0)  # (1, 4)
            this_image = det_class_images[d]  # (), scalar

            # Find objects in the same image with this class, their difficulties, and whether they have been detected before
            object_boxes = true_class_boxes[true_class_images == this_image]  # (n_class_objects_in_img)
            object_difficulties = true_class_difficulties[true_class_images == this_image]  # (n_class_objects_in_img)
            # If no such object in this image, then the detection is a false positive
            if object_boxes.size(0) == 0:
                false_positives[d] = 1
                continue

            # Find maximum overlap of this detection with objects in this image of this class
            overlaps = find_jaccard_overlap(this_detection_box, object_boxes)  # (1, n_class_objects_in_img)
            max_overlap, ind = torch.max(overlaps.squeeze(0), dim=0)  # (), () - scalars

            # 'ind' is the index of the object in these image-level tensors 'object_boxes', 'object_difficulties'
            # In the original class-level tensors 'true_class_boxes', etc., 'ind' corresponds to object with index...
            original_ind = torch.LongTensor(range(true_class_boxes.size(0)))[true_class_images == this_image][ind]
            # We need 'original_ind' to update 'true_class_boxes_detected'

            # If the maximum overlap is greater than the threshold of 0.5, it's a match
            if max_overlap.item() > 0.5:
                # If the object it matched with is 'difficult', ignore it
                if object_difficulties[ind] == 0:
                    # If this object has already not been detected, it's a true positive
                    if true_class_boxes_detected[original_ind] == 0:
                        true_positives[d] = 1
                        true_class_boxes_detected[original_ind] = 1  # this object has now been detected/accounted for
                    # Otherwise, it's a false positive (since this object is already accounted for)
                    else:
                        false_positives[d] = 1
            # Otherwise, the detection occurs in a different location than the actual object, and is a false positive
            else:
                false_positives[d] = 1

        # Compute cumulative precision and recall at each detection in the order of decreasing scores
        cumul_true_positives = torch.cumsum(true_positives, dim=0)  # (n_class_detections)
        cumul_false_positives = torch.cumsum(false_positives, dim=0)  # (n_class_detections)
        cumul_precision = cumul_true_positives / (
                cumul_true_positives + cumul_false_positives + 1e-10)  # (n_class_detections)
        cumul_recall = cumul_true_positives / n_easy_class_objects  # (n_class_detections)

        # Find the mean of the maximum of the precisions corresponding to recalls above the threshold 't'
        recall_thresholds = torch.arange(start=0, end=1.1, step=.1).tolist()  # (11)
        precisions = torch.zeros((len(recall_thresholds)), dtype=torch.float).to(device)  # (11)
        for i, t in enumerate(recall_thresholds):
            recalls_above_t = cumul_recall >= t
            if recalls_above_t.any():
                precisions[i] = cumul_precision[recalls_above_t].max()
            else:
                precisions[i] = 0.
        average_precisions[c - 1] = precisions.mean()  # c is in [1, n_classes - 1]

    # Calculate Mean Average Precision (mAP)
    mean_average_precision = average_precisions.mean().item()

    # Keep class-wise average precisions in a dictionary
    average_precisions = {rev_label_map[c + 1]: v for c, v in enumerate(average_precisions.tolist())}

    return average_precisions, mean_average_precision


def xy_to_cxcy(xy):
    """
    Convert bounding boxes from boundary coordinates (x_min, y_min, x_max, y_max) to center-size coordinates (c_x, c_y, w, h).

    :param xy: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([(xy[:, 2:] + xy[:, :2]) / 2,  # c_x, c_y
                      xy[:, 2:] - xy[:, :2]], 1)  # w, h


def cxcy_to_xy(cxcy):
    """
    Convert bounding boxes from center-size coordinates (c_x, c_y, w, h) to boundary coordinates (x_min, y_min, x_max, y_max).

    :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_boxes, 4)
    :return: bounding boxes in boundary coordinates, a tensor of size (n_boxes, 4)
    """
    return torch.cat([cxcy[:, :2] - (cxcy[:, 2:] / 2),  # x_min, y_min
                      cxcy[:, :2] + (cxcy[:, 2:] / 2)], 1)  # x_max, y_max


def cxcy_to_gcxgcy(cxcy, priors_cxcy):
    """
    Encode bounding boxes (that are in center-size form) w.r.t. the corresponding prior boxes (that are in center-size form).

    For the center coordinates, find the offset with respect to the prior box, and scale by the size of the prior box.
    For the size coordinates, scale by the size of the prior box, and convert to the log-space.

    In the model, we are predicting bounding box coordinates in this encoded form.

    :param cxcy: bounding boxes in center-size coordinates, a tensor of size (n_priors, 4)
    :param priors_cxcy: prior boxes with respect to which the encoding must be performed, a tensor of size (n_priors, 4)
    :return: encoded bounding boxes, a tensor of size (n_priors, 4)
    """

    # The 10 and 5 below are referred to as 'variances' in the original Caffe repo, completely empirical
    # They are for some sort of numerical conditioning, for 'scaling the localization gradient'
    # See https://github.com/weiliu89/caffe/issues/155
    return torch.cat([(cxcy[:, :2] - priors_cxcy[:, :2]) / (priors_cxcy[:, 2:] / 10),  # g_c_x, g_c_y
                      torch.log(cxcy[:, 2:] / priors_cxcy[:, 2:]) * 5], 1)  # g_w, g_h


def gcxgcy_to_cxcy(gcxgcy, priors_cxcy):
    """
    Decode bounding box coordinates predicted by the model, since they are encoded in the form mentioned above.

    They are decoded into center-size coordinates.

    This is the inverse of the function above.

    :param gcxgcy: encoded bounding boxes, i.e. output of the model, a tensor of size (n_priors, 4)
    :param priors_cxcy: prior boxes with respect to which the encoding is defined, a tensor of size (n_priors, 4)
    :return: decoded bounding boxes in center-size form, a tensor of size (n_priors, 4)
    """

    return torch.cat([gcxgcy[:, :2] * priors_cxcy[:, 2:] / 10 + priors_cxcy[:, :2],  # c_x, c_y
                      torch.exp(gcxgcy[:, 2:] / 5) * priors_cxcy[:, 2:]], 1)  # w, h


def find_intersection(set_1, set_2):
    """
    Find the intersection of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4)
    :param set_2: set 2, a tensor of dimensions (n2, 4)
    :return: intersection of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # PyTorch auto-broadcasts singleton dimensions
    lower_bounds = torch.max(set_1[:, :2].unsqueeze(1), set_2[:, :2].unsqueeze(0))  # (n1, n2, 2)
    upper_bounds = torch.min(set_1[:, 2:].unsqueeze(1), set_2[:, 2:].unsqueeze(0))  # (n1, n2, 2)
    intersection_dims = torch.clamp(upper_bounds - lower_bounds, min=0)  # (n1, n2, 2)
    return intersection_dims[:, :, 0] * intersection_dims[:, :, 1]  # (n1, n2)


def find_jaccard_overlap(set_1, set_2):
    """
    Find the Jaccard Overlap (IoU) of every box combination between two sets of boxes that are in boundary coordinates.

    :param set_1: set 1, a tensor of dimensions (n1, 4)
    :param set_2: set 2, a tensor of dimensions (n2, 4)
    :return: Jaccard Overlap of each of the boxes in set 1 with respect to each of the boxes in set 2, a tensor of dimensions (n1, n2)
    """

    # Find intersections
    intersection = find_intersection(set_1, set_2)  # (n1, n2)

    # Find areas of each box in both sets
    areas_set_1 = (set_1[:, 2] - set_1[:, 0]) * (set_1[:, 3] - set_1[:, 1])  # (n1)
    areas_set_2 = (set_2[:, 2] - set_2[:, 0]) * (set_2[:, 3] - set_2[:, 1])  # (n2)

    # Find the union
    # PyTorch auto-broadcasts singleton dimensions
    union = areas_set_1.unsqueeze(1) + areas_set_2.unsqueeze(0) - intersection  # (n1, n2)

    return intersection / union  # (n1, n2)


# Some augmentation functions below have been adapted from
# From https://github.com/amdegroot/ssd.pytorch/blob/master/utils/augmentations.py

def expand(image, boxes, filler):
    """
    Perform a zooming out operation by placing the image in a larger canvas of filler material.

    Helps to learn to detect smaller objects.

    :param image: image, a tensor of dimensions (3, original_h, original_w)
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :param filler: RBG values of the filler material, a list like [R, G, B]
    :return: expanded image, updated bounding box coordinates
    """
    # Calculate dimensions of proposed expanded (zoomed-out) image
    original_h = image.size(1)
    original_w = image.size(2)
    max_scale = 4
    scale = random.uniform(1, max_scale)
    new_h = int(scale * original_h)
    new_w = int(scale * original_w)

    # Create such an image with the filler
    filler = torch.FloatTensor(filler)  # (3)
    new_image = torch.ones((3, new_h, new_w), dtype=torch.float) * filler.unsqueeze(1).unsqueeze(1)  # (3, new_h, new_w)
    # Note - do not use expand() like new_image = filler.unsqueeze(1).unsqueeze(1).expand(3, new_h, new_w)
    # because all expanded values will share the same memory, so changing one pixel will change all

    # Place the original image at random coordinates in this new image (origin at top-left of image)
    left = random.randint(0, new_w - original_w)
    right = left + original_w
    top = random.randint(0, new_h - original_h)
    bottom = top + original_h
    new_image[:, top:bottom, left:right] = image

    # Adjust bounding boxes' coordinates accordingly
    new_boxes = boxes + torch.FloatTensor([left, top, left, top]).unsqueeze(
        0)  # (n_objects, 4), n_objects is the no. of objects in this image

    return new_image, new_boxes


def random_crop(image, boxes, labels, difficulties):
    """
    Performs a random crop in the manner stated in the paper. Helps to learn to detect larger and partial objects.

    Note that some objects may be cut out entirely.

    Adapted from https://github.com/amdegroot/ssd.pytorch/blob/master/utils/augmentations.py

    :param image: image, a tensor of dimensions (3, original_h, original_w)
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :param labels: labels of objects, a tensor of dimensions (n_objects)
    :param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
    :return: cropped image, updated bounding box coordinates, updated labels, updated difficulties
    """
    original_h = image.size(1)
    original_w = image.size(2)
    # Keep choosing a minimum overlap until a successful crop is made
    while True:
        # Randomly draw the value for minimum overlap
        min_overlap = random.choice([0., .1, .3, .5, .7, .9, None])  # 'None' refers to no cropping

        # If not cropping
        if min_overlap is None:
            return image, boxes, labels, difficulties

        # Try up to 50 times for this choice of minimum overlap
        # This isn't mentioned in the paper, of course, but 50 is chosen in paper authors' original Caffe repo
        max_trials = 50
        for _ in range(max_trials):
            # Crop dimensions must be in [0.3, 1] of original dimensions
            # Note - it's [0.1, 1] in the paper, but actually [0.3, 1] in the authors' repo
            min_scale = 0.3
            scale_h = random.uniform(min_scale, 1)
            scale_w = random.uniform(min_scale, 1)
            new_h = int(scale_h * original_h)
            new_w = int(scale_w * original_w)

            # Aspect ratio has to be in [0.5, 2]
            aspect_ratio = new_h / new_w
            if not 0.5 < aspect_ratio < 2:
                continue

            # Crop coordinates (origin at top-left of image)
            left = random.randint(0, original_w - new_w)
            right = left + new_w
            top = random.randint(0, original_h - new_h)
            bottom = top + new_h
            crop = torch.FloatTensor([left, top, right, bottom])  # (4)

            # Calculate Jaccard overlap between the crop and the bounding boxes
            overlap = find_jaccard_overlap(crop.unsqueeze(0),
                                           boxes)  # (1, n_objects), n_objects is the no. of objects in this image
            overlap = overlap.squeeze(0)  # (n_objects)

            # If not a single bounding box has a Jaccard overlap of greater than the minimum, try again
            if overlap.max().item() < min_overlap:
                continue

            # Crop image
            new_image = image[:, top:bottom, left:right]  # (3, new_h, new_w)

            # Find centers of original bounding boxes
            bb_centers = (boxes[:, :2] + boxes[:, 2:]) / 2.  # (n_objects, 2)

            # Find bounding boxes whose centers are in the crop
            centers_in_crop = (bb_centers[:, 0] > left) * (bb_centers[:, 0] < right) * (bb_centers[:, 1] > top) * (
                    bb_centers[:, 1] < bottom)  # (n_objects), a Torch uInt8/Byte tensor, can be used as a boolean index

            # If not a single bounding box has its center in the crop, try again
            if not centers_in_crop.any():
                continue

            # Discard bounding boxes that don't meet this criterion
            new_boxes = boxes[centers_in_crop, :]
            new_labels = labels[centers_in_crop]
            new_difficulties = difficulties[centers_in_crop]

            # Calculate bounding boxes' new coordinates in the crop
            new_boxes[:, :2] = torch.max(new_boxes[:, :2], crop[:2])  # crop[:2] is [left, top]
            new_boxes[:, :2] -= crop[:2]
            new_boxes[:, 2:] = torch.min(new_boxes[:, 2:], crop[2:])  # crop[2:] is [right, bottom]
            new_boxes[:, 2:] -= crop[:2]

            return new_image, new_boxes, new_labels, new_difficulties


def flip(image, boxes):
    """
    Flip image horizontally.

    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :return: flipped image, updated bounding box coordinates
    """
    # Flip image
    new_image = FT.hflip(image)

    # Flip boxes
    new_boxes = boxes
    new_boxes[:, 0] = image.width - boxes[:, 0] - 1
    new_boxes[:, 2] = image.width - boxes[:, 2] - 1
    new_boxes = new_boxes[:, [2, 1, 0, 3]]

    return new_image, new_boxes


def resize(image, boxes, dims=(300, 300), return_percent_coords=True):
    """
    Resize image. For the SSD300, resize to (300, 300).

    Since percent/fractional coordinates are calculated for the bounding boxes (w.r.t image dimensions) in this process,
    you may choose to retain them.

    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :return: resized image, updated bounding box coordinates (or fractional coordinates, in which case they remain the same)
    """
    # Resize image
    new_image = FT.resize(image, dims)

    # Resize bounding boxes
    old_dims = torch.FloatTensor([image.width, image.height, image.width, image.height]).unsqueeze(0)
    new_boxes = boxes / old_dims  # percent coordinates

    if not return_percent_coords:
        new_dims = torch.FloatTensor([dims[1], dims[0], dims[1], dims[0]]).unsqueeze(0)
        new_boxes = new_boxes * new_dims

    return new_image, new_boxes


def photometric_distort(image):
    """
    Distort brightness, contrast, saturation, and hue, each with a 50% chance, in random order.

    :param image: image, a PIL Image
    :return: distorted image
    """
    new_image = image

    distortions = [FT.adjust_brightness,
                   FT.adjust_contrast,
                   FT.adjust_saturation,
                   FT.adjust_hue]

    random.shuffle(distortions)

    for d in distortions:
        if random.random() < 0.5:
            if d.__name__ is 'adjust_hue':
                # Caffe repo uses a 'hue_delta' of 18 - we divide by 255 because PyTorch needs a normalized value
                adjust_factor = random.uniform(-18 / 255., 18 / 255.)
            else:
                # Caffe repo uses 'lower' and 'upper' values of 0.5 and 1.5 for brightness, contrast, and saturation
                adjust_factor = random.uniform(0.5, 1.5)

            # Apply this distortion
            new_image = d(new_image, adjust_factor)

    return new_image


def transform(image, boxes, labels, difficulties, split):
    """
    Apply the transformations above.

    :param image: image, a PIL Image
    :param boxes: bounding boxes in boundary coordinates, a tensor of dimensions (n_objects, 4)
    :param labels: labels of objects, a tensor of dimensions (n_objects)
    :param difficulties: difficulties of detection of these objects, a tensor of dimensions (n_objects)
    :param split: one of 'TRAIN' or 'TEST', since different sets of transformations are applied
    :return: transformed image, transformed bounding box coordinates, transformed labels, transformed difficulties
    """
    assert split in {'TRAIN', 'TEST'}

    # Mean and standard deviation of ImageNet data that our base VGG from torchvision was trained on
    # see: https://pytorch.org/docs/stable/torchvision/models.html
    mean = [0.485, 0.456, 0.406]
    std = [0.229, 0.224, 0.225]

    new_image = image
    new_boxes = boxes
    new_labels = labels
    new_difficulties = difficulties
    # Skip the following operations for evaluation/testing
    if split == 'TRAIN':
        # A series of photometric distortions in random order, each with 50% chance of occurrence, as in Caffe repo
        new_image = photometric_distort(new_image)

        # Convert PIL image to Torch tensor
        new_image = FT.to_tensor(new_image)

        # Expand image (zoom out) with a 50% chance - helpful for training detection of small objects
        # Fill surrounding space with the mean of ImageNet data that our base VGG was trained on
        if random.random() < 0.5:
            new_image, new_boxes = expand(new_image, boxes, filler=mean)

        # Randomly crop image (zoom in)
        new_image, new_boxes, new_labels, new_difficulties = random_crop(new_image, new_boxes, new_labels,
                                                                         new_difficulties)

        # Convert Torch tensor to PIL image
        new_image = FT.to_pil_image(new_image)

        # Flip image with a 50% chance
        if random.random() < 0.5:
            new_image, new_boxes = flip(new_image, new_boxes)

    # Resize image to (300, 300) - this also converts absolute boundary coordinates to their fractional form
    new_image, new_boxes = resize(new_image, new_boxes, dims=(300, 300))

    # Convert PIL image to Torch tensor
    new_image = FT.to_tensor(new_image)

    # Normalize by mean and standard deviation of ImageNet data that our base VGG was trained on
    new_image = FT.normalize(new_image, mean=mean, std=std)

    return new_image, new_boxes, new_labels, new_difficulties


def adjust_learning_rate(optimizer, scale):
    """
    Scale learning rate by a specified factor.

    :param optimizer: optimizer whose learning rate must be shrunk.
    :param scale: factor to multiply learning rate with.
    """
    for param_group in optimizer.param_groups:
        param_group['lr'] = param_group['lr'] * scale
    print("DECAYING learning rate.\n The new LR is %f\n" % (optimizer.param_groups[1]['lr'],))


def accuracy(scores, targets, k):
    """
    Computes top-k accuracy, from predicted and true labels.

    :param scores: scores from the model
    :param targets: true labels
    :param k: k in top-k accuracy
    :return: top-k accuracy
    """
    batch_size = targets.size(0)
    _, ind = scores.topk(k, 1, True, True)
    correct = ind.eq(targets.view(-1, 1).expand_as(ind))
    correct_total = correct.view(-1).float().sum()  # 0D tensor
    return correct_total.item() * (100.0 / batch_size)


def save_checkpoint(epoch, model, optimizer):
    """
    Save model checkpoint.

    :param epoch: epoch number
    :param model: model
    :param optimizer: optimizer
    """
    state = {'epoch': epoch,
             'model': model,
             'optimizer': optimizer}
    filename = 'checkpoint_ssd300.pth.tar'
    torch.save(state, filename)


class AverageMeter(object):
    """
    Keeps track of most recent, average, sum, and count of a metric.
    """

    def __init__(self):
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count


def clip_gradient(optimizer, grad_clip):
    """
    Clips gradients computed during backpropagation to avoid explosion of gradients.

    :param optimizer: optimizer with the gradients to be clipped
    :param grad_clip: clip value
    """
    for group in optimizer.param_groups:
        for param in group['params']:
            if param.grad is not None:
                param.grad.data.clamp_(-grad_clip, grad_clip)

 
## model.py



from torch import nn
from utils import *
import torch.nn.functional as F
from math import sqrt
from itertools import product as product
import torchvision

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")


class VGGBase(nn.Module):
    """
    VGG base convolutions to produce lower-level feature maps.
    """

    def __init__(self):
        super(VGGBase, self).__init__()

        # Standard convolutional layers in VGG16
        self.conv1_1 = nn.Conv2d(3, 64, kernel_size=3, padding=1)  # stride = 1, by default
        self.conv1_2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
        self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv2_1 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
        self.conv2_2 = nn.Conv2d(128, 128, kernel_size=3, padding=1)
        self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv3_1 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
        self.conv3_2 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.conv3_3 = nn.Conv2d(256, 256, kernel_size=3, padding=1)
        self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2, ceil_mode=True)  # ceiling (not floor) here for even dims

        self.conv4_1 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
        self.conv4_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv4_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2)

        self.conv5_1 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv5_2 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.conv5_3 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
        self.pool5 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)  # retains size because stride is 1 (and padding)

        # Replacements for FC6 and FC7 in VGG16
        self.conv6 = nn.Conv2d(512, 1024, kernel_size=3, padding=6, dilation=6)  # atrous convolution

        self.conv7 = nn.Conv2d(1024, 1024, kernel_size=1)

        # Load pretrained layers
        self.load_pretrained_layers()

    def forward(self, image):
        """
        Forward propagation.

        :param image: images, a tensor of dimensions (N, 3, 300, 300)
        :return: lower-level feature maps conv4_3 and conv7
        """
        out = F.relu(self.conv1_1(image))  # (N, 64, 300, 300)
        out = F.relu(self.conv1_2(out))  # (N, 64, 300, 300)
        out = self.pool1(out)  # (N, 64, 150, 150)

        out = F.relu(self.conv2_1(out))  # (N, 128, 150, 150)
        out = F.relu(self.conv2_2(out))  # (N, 128, 150, 150)
        out = self.pool2(out)  # (N, 128, 75, 75)

        out = F.relu(self.conv3_1(out))  # (N, 256, 75, 75)
        out = F.relu(self.conv3_2(out))  # (N, 256, 75, 75)
        out = F.relu(self.conv3_3(out))  # (N, 256, 75, 75)
        out = self.pool3(out)  # (N, 256, 38, 38), it would have been 37 if not for ceil_mode = True

        out = F.relu(self.conv4_1(out))  # (N, 512, 38, 38)
        out = F.relu(self.conv4_2(out))  # (N, 512, 38, 38)
        out = F.relu(self.conv4_3(out))  # (N, 512, 38, 38)
        conv4_3_feats = out  # (N, 512, 38, 38)
        out = self.pool4(out)  # (N, 512, 19, 19)

        out = F.relu(self.conv5_1(out))  # (N, 512, 19, 19)
        out = F.relu(self.conv5_2(out))  # (N, 512, 19, 19)
        out = F.relu(self.conv5_3(out))  # (N, 512, 19, 19)
        out = self.pool5(out)  # (N, 512, 19, 19), pool5 does not reduce dimensions

        out = F.relu(self.conv6(out))  # (N, 1024, 19, 19)

        conv7_feats = F.relu(self.conv7(out))  # (N, 1024, 19, 19)

        # Lower-level feature maps
        return conv4_3_feats, conv7_feats

    def load_pretrained_layers(self):
        """
        As in the paper, we use a VGG-16 pretrained on the ImageNet task as the base network.
        There's one available in PyTorch, see https://pytorch.org/docs/stable/torchvision/models.html#torchvision.models.vgg16
        We copy these parameters into our network. It's straightforward for conv1 to conv5.
        However, the original VGG-16 does not contain the conv6 and con7 layers.
        Therefore, we convert fc6 and fc7 into convolutional layers, and subsample by decimation. See 'decimate' in utils.py.
        """
        # Current state of base
        state_dict = self.state_dict()
        param_names = list(state_dict.keys())

        # Pretrained VGG base
        pretrained_state_dict = torchvision.models.vgg16(pretrained=True).state_dict()
        pretrained_param_names = list(pretrained_state_dict.keys())

        # Transfer conv. parameters from pretrained model to current model
        for i, param in enumerate(param_names[:-4]):  # excluding conv6 and conv7 parameters
            state_dict[param] = pretrained_state_dict[pretrained_param_names[i]]

        # Convert fc6, fc7 to convolutional layers, and subsample (by decimation) to sizes of conv6 and conv7
        # fc6
        conv_fc6_weight = pretrained_state_dict['classifier.0.weight'].view(4096, 512, 7, 7)  # (4096, 512, 7, 7)
        conv_fc6_bias = pretrained_state_dict['classifier.0.bias']  # (4096)
        state_dict['conv6.weight'] = decimate(conv_fc6_weight, m=[4, None, 3, 3])  # (1024, 512, 3, 3)
        state_dict['conv6.bias'] = decimate(conv_fc6_bias, m=[4])  # (1024)
        # fc7
        conv_fc7_weight = pretrained_state_dict['classifier.3.weight'].view(4096, 4096, 1, 1)  # (4096, 4096, 1, 1)
        conv_fc7_bias = pretrained_state_dict['classifier.3.bias']  # (4096)
        state_dict['conv7.weight'] = decimate(conv_fc7_weight, m=[4, 4, None, None])  # (1024, 1024, 1, 1)
        state_dict['conv7.bias'] = decimate(conv_fc7_bias, m=[4])  # (1024)

        # Note: an FC layer of size (K) operating on a flattened version (C*H*W) of a 2D image of size (C, H, W)...
        # ...is equivalent to a convolutional layer with kernel size (H, W), input channels C, output channels K...
        # ...operating on the 2D image of size (C, H, W) without padding

        self.load_state_dict(state_dict)

        print("\nLoaded base model.\n")


class AuxiliaryConvolutions(nn.Module):
    """
    Additional convolutions to produce higher-level feature maps.
    """

    def __init__(self):
        super(AuxiliaryConvolutions, self).__init__()

        # Auxiliary/additional convolutions on top of the VGG base
        self.conv8_1 = nn.Conv2d(1024, 256, kernel_size=1, padding=0)  # stride = 1, by default
        self.conv8_2 = nn.Conv2d(256, 512, kernel_size=3, stride=2, padding=1)  # dim. reduction because stride > 1

        self.conv9_1 = nn.Conv2d(512, 128, kernel_size=1, padding=0)
        self.conv9_2 = nn.Conv2d(128, 256, kernel_size=3, stride=2, padding=1)  # dim. reduction because stride > 1

        self.conv10_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
        self.conv10_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)  # dim. reduction because padding = 0

        self.conv11_1 = nn.Conv2d(256, 128, kernel_size=1, padding=0)
        self.conv11_2 = nn.Conv2d(128, 256, kernel_size=3, padding=0)  # dim. reduction because padding = 0

        # Initialize convolutions' parameters
        self.init_conv2d()

    def init_conv2d(self):
        """
        Initialize convolution parameters.
        """
        for c in self.children():
            if isinstance(c, nn.Conv2d):
                nn.init.xavier_uniform_(c.weight)
                nn.init.constant_(c.bias, 0.)

    def forward(self, conv7_feats):
        """
        Forward propagation.

        :param conv7_feats: lower-level conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
        :return: higher-level feature maps conv8_2, conv9_2, conv10_2, and conv11_2
        """
        out = F.relu(self.conv8_1(conv7_feats))  # (N, 256, 19, 19)
        out = F.relu(self.conv8_2(out))  # (N, 512, 10, 10)
        conv8_2_feats = out  # (N, 512, 10, 10)

        out = F.relu(self.conv9_1(out))  # (N, 128, 10, 10)
        out = F.relu(self.conv9_2(out))  # (N, 256, 5, 5)
        conv9_2_feats = out  # (N, 256, 5, 5)

        out = F.relu(self.conv10_1(out))  # (N, 128, 5, 5)
        out = F.relu(self.conv10_2(out))  # (N, 256, 3, 3)
        conv10_2_feats = out  # (N, 256, 3, 3)

        out = F.relu(self.conv11_1(out))  # (N, 128, 3, 3)
        conv11_2_feats = F.relu(self.conv11_2(out))  # (N, 256, 1, 1)

        # Higher-level feature maps
        return conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats


class PredictionConvolutions(nn.Module):
    """
    Convolutions to predict class scores and bounding boxes using lower and higher-level feature maps.

    The bounding boxes (locations) are predicted as encoded offsets w.r.t each of the 8732 prior (default) boxes.
    See 'cxcy_to_gcxgcy' in utils.py for the encoding definition.

    The class scores represent the scores of each object class in each of the 8732 bounding boxes located.
    A high score for 'background' = no object.
    """

    def __init__(self, n_classes):
        """
        :param n_classes: number of different types of objects
        """
        super(PredictionConvolutions, self).__init__()

        self.n_classes = n_classes

        # Number of prior-boxes we are considering per position in each feature map
        n_boxes = {'conv4_3': 4,
                   'conv7': 6,
                   'conv8_2': 6,
                   'conv9_2': 6,
                   'conv10_2': 4,
                   'conv11_2': 4}
        # 4 prior-boxes implies we use 4 different aspect ratios, etc.

        # Localization prediction convolutions (predict offsets w.r.t prior-boxes)
        self.loc_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * 4, kernel_size=3, padding=1)
        self.loc_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * 4, kernel_size=3, padding=1)
        self.loc_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * 4, kernel_size=3, padding=1)
        self.loc_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * 4, kernel_size=3, padding=1)

        # Class prediction convolutions (predict classes in localization boxes)
        self.cl_conv4_3 = nn.Conv2d(512, n_boxes['conv4_3'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv7 = nn.Conv2d(1024, n_boxes['conv7'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv8_2 = nn.Conv2d(512, n_boxes['conv8_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv9_2 = nn.Conv2d(256, n_boxes['conv9_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv10_2 = nn.Conv2d(256, n_boxes['conv10_2'] * n_classes, kernel_size=3, padding=1)
        self.cl_conv11_2 = nn.Conv2d(256, n_boxes['conv11_2'] * n_classes, kernel_size=3, padding=1)

        # Initialize convolutions' parameters
        self.init_conv2d()

    def init_conv2d(self):
        """
        Initialize convolution parameters.
        """
        for c in self.children():
            if isinstance(c, nn.Conv2d):
                nn.init.xavier_uniform_(c.weight)
                nn.init.constant_(c.bias, 0.)

    def forward(self, conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats):
        """
        Forward propagation.

        :param conv4_3_feats: conv4_3 feature map, a tensor of dimensions (N, 512, 38, 38)
        :param conv7_feats: conv7 feature map, a tensor of dimensions (N, 1024, 19, 19)
        :param conv8_2_feats: conv8_2 feature map, a tensor of dimensions (N, 512, 10, 10)
        :param conv9_2_feats: conv9_2 feature map, a tensor of dimensions (N, 256, 5, 5)
        :param conv10_2_feats: conv10_2 feature map, a tensor of dimensions (N, 256, 3, 3)
        :param conv11_2_feats: conv11_2 feature map, a tensor of dimensions (N, 256, 1, 1)
        :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
        """
        batch_size = conv4_3_feats.size(0)

        # Predict localization boxes' bounds (as offsets w.r.t prior-boxes)
        l_conv4_3 = self.loc_conv4_3(conv4_3_feats)  # (N, 16, 38, 38)
        l_conv4_3 = l_conv4_3.permute(0, 2, 3,
                                      1).contiguous()  # (N, 38, 38, 16), to match prior-box order (after .view())
        # (.contiguous() ensures it is stored in a contiguous chunk of memory, needed for .view() below)
        l_conv4_3 = l_conv4_3.view(batch_size, -1, 4)  # (N, 5776, 4), there are a total 5776 boxes on this feature map

        l_conv7 = self.loc_conv7(conv7_feats)  # (N, 24, 19, 19)
        l_conv7 = l_conv7.permute(0, 2, 3, 1).contiguous()  # (N, 19, 19, 24)
        l_conv7 = l_conv7.view(batch_size, -1, 4)  # (N, 2166, 4), there are a total 2116 boxes on this feature map

        l_conv8_2 = self.loc_conv8_2(conv8_2_feats)  # (N, 24, 10, 10)
        l_conv8_2 = l_conv8_2.permute(0, 2, 3, 1).contiguous()  # (N, 10, 10, 24)
        l_conv8_2 = l_conv8_2.view(batch_size, -1, 4)  # (N, 600, 4)

        l_conv9_2 = self.loc_conv9_2(conv9_2_feats)  # (N, 24, 5, 5)
        l_conv9_2 = l_conv9_2.permute(0, 2, 3, 1).contiguous()  # (N, 5, 5, 24)
        l_conv9_2 = l_conv9_2.view(batch_size, -1, 4)  # (N, 150, 4)

        l_conv10_2 = self.loc_conv10_2(conv10_2_feats)  # (N, 16, 3, 3)
        l_conv10_2 = l_conv10_2.permute(0, 2, 3, 1).contiguous()  # (N, 3, 3, 16)
        l_conv10_2 = l_conv10_2.view(batch_size, -1, 4)  # (N, 36, 4)

        l_conv11_2 = self.loc_conv11_2(conv11_2_feats)  # (N, 16, 1, 1)
        l_conv11_2 = l_conv11_2.permute(0, 2, 3, 1).contiguous()  # (N, 1, 1, 16)
        l_conv11_2 = l_conv11_2.view(batch_size, -1, 4)  # (N, 4, 4)

        # Predict classes in localization boxes
        c_conv4_3 = self.cl_conv4_3(conv4_3_feats)  # (N, 4 * n_classes, 38, 38)
        c_conv4_3 = c_conv4_3.permute(0, 2, 3,
                                      1).contiguous()  # (N, 38, 38, 4 * n_classes), to match prior-box order (after .view())
        c_conv4_3 = c_conv4_3.view(batch_size, -1,
                                   self.n_classes)  # (N, 5776, n_classes), there are a total 5776 boxes on this feature map

        c_conv7 = self.cl_conv7(conv7_feats)  # (N, 6 * n_classes, 19, 19)
        c_conv7 = c_conv7.permute(0, 2, 3, 1).contiguous()  # (N, 19, 19, 6 * n_classes)
        c_conv7 = c_conv7.view(batch_size, -1,
                               self.n_classes)  # (N, 2166, n_classes), there are a total 2116 boxes on this feature map

        c_conv8_2 = self.cl_conv8_2(conv8_2_feats)  # (N, 6 * n_classes, 10, 10)
        c_conv8_2 = c_conv8_2.permute(0, 2, 3, 1).contiguous()  # (N, 10, 10, 6 * n_classes)
        c_conv8_2 = c_conv8_2.view(batch_size, -1, self.n_classes)  # (N, 600, n_classes)

        c_conv9_2 = self.cl_conv9_2(conv9_2_feats)  # (N, 6 * n_classes, 5, 5)
        c_conv9_2 = c_conv9_2.permute(0, 2, 3, 1).contiguous()  # (N, 5, 5, 6 * n_classes)
        c_conv9_2 = c_conv9_2.view(batch_size, -1, self.n_classes)  # (N, 150, n_classes)

        c_conv10_2 = self.cl_conv10_2(conv10_2_feats)  # (N, 4 * n_classes, 3, 3)
        c_conv10_2 = c_conv10_2.permute(0, 2, 3, 1).contiguous()  # (N, 3, 3, 4 * n_classes)
        c_conv10_2 = c_conv10_2.view(batch_size, -1, self.n_classes)  # (N, 36, n_classes)

        c_conv11_2 = self.cl_conv11_2(conv11_2_feats)  # (N, 4 * n_classes, 1, 1)
        c_conv11_2 = c_conv11_2.permute(0, 2, 3, 1).contiguous()  # (N, 1, 1, 4 * n_classes)
        c_conv11_2 = c_conv11_2.view(batch_size, -1, self.n_classes)  # (N, 4, n_classes)

        # A total of 8732 boxes
        # Concatenate in this specific order (i.e. must match the order of the prior-boxes)
        locs = torch.cat([l_conv4_3, l_conv7, l_conv8_2, l_conv9_2, l_conv10_2, l_conv11_2], dim=1)  # (N, 8732, 4)
        classes_scores = torch.cat([c_conv4_3, c_conv7, c_conv8_2, c_conv9_2, c_conv10_2, c_conv11_2],
                                   dim=1)  # (N, 8732, n_classes)

        return locs, classes_scores


class SSD300(nn.Module):
    """
    The SSD300 network - encapsulates the base VGG network, auxiliary, and prediction convolutions.
    """

    def __init__(self, n_classes):
        super(SSD300, self).__init__()

        self.n_classes = n_classes

        self.base = VGGBase()
        self.aux_convs = AuxiliaryConvolutions()
        self.pred_convs = PredictionConvolutions(n_classes)

        # Since lower level features (conv4_3_feats) have considerably larger scales, we take the L2 norm and rescale
        # Rescale factor is initially set at 20, but is learned for each channel during back-prop
        self.rescale_factors = nn.Parameter(torch.FloatTensor(1, 512, 1, 1))  # there are 512 channels in conv4_3_feats
        nn.init.constant_(self.rescale_factors, 20)

        # Prior boxes
        self.priors_cxcy = self.create_prior_boxes()

    def forward(self, image):
        """
        Forward propagation.

        :param image: images, a tensor of dimensions (N, 3, 300, 300)
        :return: 8732 locations and class scores (i.e. w.r.t each prior box) for each image
        """
        # Run VGG base network convolutions (lower level feature map generators)
        conv4_3_feats, conv7_feats = self.base(image)  # (N, 512, 38, 38), (N, 1024, 19, 19)

        # Rescale conv4_3 after L2 norm
        norm = conv4_3_feats.pow(2).sum(dim=1, keepdim=True).sqrt()  # (N, 1, 38, 38)
        conv4_3_feats = conv4_3_feats / norm  # (N, 512, 38, 38)
        conv4_3_feats = conv4_3_feats * self.rescale_factors  # (N, 512, 38, 38)
        # (PyTorch autobroadcasts singleton dimensions during arithmetic)

        # Run auxiliary convolutions (higher level feature map generators)
        conv8_2_feats, conv9_2_feats, conv10_2_feats, conv11_2_feats = \
            self.aux_convs(conv7_feats)  # (N, 512, 10, 10),  (N, 256, 5, 5), (N, 256, 3, 3), (N, 256, 1, 1)

        # Run prediction convolutions (predict offsets w.r.t prior-boxes and classes in each resulting localization box)
        locs, classes_scores = self.pred_convs(conv4_3_feats, conv7_feats, conv8_2_feats, conv9_2_feats, conv10_2_feats,
                                               conv11_2_feats)  # (N, 8732, 4), (N, 8732, n_classes)

        return locs, classes_scores

    def create_prior_boxes(self):
        """
        Create the 8732 prior (default) boxes for the SSD300, as defined in the paper.

        :return: prior boxes in center-size coordinates, a tensor of dimensions (8732, 4)
        """
        fmap_dims = {'conv4_3': 38,
                     'conv7': 19,
                     'conv8_2': 10,
                     'conv9_2': 5,
                     'conv10_2': 3,
                     'conv11_2': 1}

        obj_scales = {'conv4_3': 0.1,
                      'conv7': 0.2,
                      'conv8_2': 0.375,
                      'conv9_2': 0.55,
                      'conv10_2': 0.725,
                      'conv11_2': 0.9}

        aspect_ratios = {'conv4_3': [1., 2., 0.5],
                         'conv7': [1., 2., 3., 0.5, .333],
                         'conv8_2': [1., 2., 3., 0.5, .333],
                         'conv9_2': [1., 2., 3., 0.5, .333],
                         'conv10_2': [1., 2., 0.5],
                         'conv11_2': [1., 2., 0.5]}

        fmaps = list(fmap_dims.keys())

        prior_boxes = []

        for k, fmap in enumerate(fmaps):
            for i in range(fmap_dims[fmap]):
                for j in range(fmap_dims[fmap]):
                    cx = (j + 0.5) / fmap_dims[fmap]
                    cy = (i + 0.5) / fmap_dims[fmap]

                    for ratio in aspect_ratios[fmap]:
                        prior_boxes.append([cx, cy, obj_scales[fmap] * sqrt(ratio), obj_scales[fmap] / sqrt(ratio)])

                        # For an aspect ratio of 1, use an additional prior whose scale is the geometric mean of the
                        # scale of the current feature map and the scale of the next feature map
                        if ratio == 1.:
                            try:
                                additional_scale = sqrt(obj_scales[fmap] * obj_scales[fmaps[k + 1]])
                            # For the last feature map, there is no "next" feature map
                            except IndexError:
                                additional_scale = 1.
                            prior_boxes.append([cx, cy, additional_scale, additional_scale])

        prior_boxes = torch.FloatTensor(prior_boxes).to(device)  # (8732, 4)
        prior_boxes.clamp_(0, 1)  # (8732, 4)

        return prior_boxes

    def detect_objects(self, predicted_locs, predicted_scores, min_score, max_overlap, top_k):
        """
        Decipher the 8732 locations and class scores (output of ths SSD300) to detect objects.

        For each class, perform Non-Maximum Suppression (NMS) on boxes that are above a minimum threshold.

        :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4)
        :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes)
        :param min_score: minimum threshold for a box to be considered a match for a certain class
        :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via NMS
        :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k'
        :return: detections (boxes, labels, and scores), lists of length batch_size
        """
        batch_size = predicted_locs.size(0)
        n_priors = self.priors_cxcy.size(0)
        predicted_scores = F.softmax(predicted_scores, dim=2)  # (N, 8732, n_classes)

        # Lists to store final predicted boxes, labels, and scores for all images
        all_images_boxes = list()
        all_images_labels = list()
        all_images_scores = list()

        assert n_priors == predicted_locs.size(1) == predicted_scores.size(1)

        for i in range(batch_size):
            # Decode object coordinates from the form we regressed predicted boxes to
            decoded_locs = cxcy_to_xy(
                gcxgcy_to_cxcy(predicted_locs[i], self.priors_cxcy))  # (8732, 4), these are fractional pt. coordinates

            # Lists to store boxes and scores for this image
            image_boxes = list()
            image_labels = list()
            image_scores = list()

            max_scores, best_label = predicted_scores[i].max(dim=1)  # (8732)

            # Check for each class
            for c in range(1, self.n_classes):
                # Keep only predicted boxes and scores where scores for this class are above the minimum score
                class_scores = predicted_scores[i][:, c]  # (8732)
                score_above_min_score = class_scores > min_score  # torch.uint8 (byte) tensor, for indexing
                n_above_min_score = score_above_min_score.sum().item()
                if n_above_min_score == 0:
                    continue
                class_scores = class_scores[score_above_min_score]  # (n_qualified), n_min_score <= 8732
                class_decoded_locs = decoded_locs[score_above_min_score]  # (n_qualified, 4)

                # Sort predicted boxes and scores by scores
                class_scores, sort_ind = class_scores.sort(dim=0, descending=True)  # (n_qualified), (n_min_score)
                class_decoded_locs = class_decoded_locs[sort_ind]  # (n_min_score, 4)

                # Find the overlap between predicted boxes
                overlap = find_jaccard_overlap(class_decoded_locs, class_decoded_locs)  # (n_qualified, n_min_score)

                # Non-Maximum Suppression (NMS)

                # A torch.uint8 (byte) tensor to keep track of which predicted boxes to suppress
                # 1 implies suppress, 0 implies don't suppress
                suppress = torch.zeros((n_above_min_score), dtype=torch.uint8).to(device)  # (n_qualified)

                # Consider each box in order of decreasing scores
                for box in range(class_decoded_locs.size(0)):
                    # If this box is already marked for suppression
                    if suppress[box] == 1:
                        continue

                    # Suppress boxes whose overlaps (with this box) are greater than maximum overlap
                    # Find such boxes and update suppress indices
                    suppress = torch.max(suppress, overlap[box] > max_overlap)
                    # The max operation retains previously suppressed boxes, like an 'OR' operation

                    # Don't suppress this box, even though it has an overlap of 1 with itself
                    suppress[box] = 0

                # Store only unsuppressed boxes for this class
                image_boxes.append(class_decoded_locs[1 - suppress])
                image_labels.append(torch.LongTensor((1 - suppress).sum().item() * [c]).to(device))
                image_scores.append(class_scores[1 - suppress])

            # If no object in any class is found, store a placeholder for 'background'
            if len(image_boxes) == 0:
                image_boxes.append(torch.FloatTensor([[0., 0., 1., 1.]]).to(device))
                image_labels.append(torch.LongTensor([0]).to(device))
                image_scores.append(torch.FloatTensor([0.]).to(device))

            # Concatenate into single tensors
            image_boxes = torch.cat(image_boxes, dim=0)  # (n_objects, 4)
            image_labels = torch.cat(image_labels, dim=0)  # (n_objects)
            image_scores = torch.cat(image_scores, dim=0)  # (n_objects)
            n_objects = image_scores.size(0)

            # Keep only the top k objects
            if n_objects > top_k:
                image_scores, sort_ind = image_scores.sort(dim=0, descending=True)
                image_scores = image_scores[:top_k]  # (top_k)
                image_boxes = image_boxes[sort_ind][:top_k]  # (top_k, 4)
                image_labels = image_labels[sort_ind][:top_k]  # (top_k)

            # Append to lists that store predicted boxes and scores for all images
            all_images_boxes.append(image_boxes)
            all_images_labels.append(image_labels)
            all_images_scores.append(image_scores)

        return all_images_boxes, all_images_labels, all_images_scores  # lists of length batch_size


class MultiBoxLoss(nn.Module):
    """
    The MultiBox loss, a loss function for object detection.

    This is a combination of:
    (1) a localization loss for the predicted locations of the boxes, and
    (2) a confidence loss for the predicted class scores.
    """

    def __init__(self, priors_cxcy, threshold=0.5, neg_pos_ratio=3, alpha=1.):
        super(MultiBoxLoss, self).__init__()
        self.priors_cxcy = priors_cxcy
        self.priors_xy = cxcy_to_xy(priors_cxcy)
        self.threshold = threshold
        self.neg_pos_ratio = neg_pos_ratio
        self.alpha = alpha

        self.smooth_l1 = nn.L1Loss()
        self.cross_entropy = nn.CrossEntropyLoss(reduce=False)

    def forward(self, predicted_locs, predicted_scores, boxes, labels):
        """
        Forward propagation.

        :param predicted_locs: predicted locations/boxes w.r.t the 8732 prior boxes, a tensor of dimensions (N, 8732, 4)
        :param predicted_scores: class scores for each of the encoded locations/boxes, a tensor of dimensions (N, 8732, n_classes)
        :param boxes: true  object bounding boxes in boundary coordinates, a list of N tensors
        :param labels: true object labels, a list of N tensors
        :return: multibox loss, a scalar
        """
        batch_size = predicted_locs.size(0)
        n_priors = self.priors_cxcy.size(0)
        n_classes = predicted_scores.size(2)

        assert n_priors == predicted_locs.size(1) == predicted_scores.size(1)

        true_locs = torch.zeros((batch_size, n_priors, 4), dtype=torch.float).to(device)  # (N, 8732, 4)
        true_classes = torch.zeros((batch_size, n_priors), dtype=torch.long).to(device)  # (N, 8732)

        # For each image
        for i in range(batch_size):
            n_objects = boxes[i].size(0)

            overlap = find_jaccard_overlap(boxes[i],
                                           self.priors_xy)  # (n_objects, 8732)

            # For each prior, find the object that has the maximum overlap
            overlap_for_each_prior, object_for_each_prior = overlap.max(dim=0)  # (8732)

            # We don't want a situation where an object is not represented in our positive (non-background) priors -
            # 1. An object might not be the best object for all priors, and is therefore not in object_for_each_prior.
            # 2. All priors with the object may be assigned as background based on the threshold (0.5).

            # To remedy this -
            # First, find the prior that has the maximum overlap for each object.
            _, prior_for_each_object = overlap.max(dim=1)  # (N_o)

            # Then, assign each object to the corresponding maximum-overlap-prior. (This fixes 1.)
            object_for_each_prior[prior_for_each_object] = torch.LongTensor(range(n_objects)).to(device)

            # To ensure these priors qualify, artificially give them an overlap of greater than 0.5. (This fixes 2.)
            overlap_for_each_prior[prior_for_each_object] = 1.

            # Labels for each prior
            label_for_each_prior = labels[i][object_for_each_prior]  # (8732)
            # Set priors whose overlaps with objects are less than the threshold to be background (no object)
            label_for_each_prior[overlap_for_each_prior < self.threshold] = 0  # (8732)

            # Store
            true_classes[i] = label_for_each_prior

            # Encode center-size object coordinates into the form we regressed predicted boxes to
            true_locs[i] = cxcy_to_gcxgcy(xy_to_cxcy(boxes[i][object_for_each_prior]), self.priors_cxcy)  # (8732, 4)

        # Identify priors that are positive (object/non-background)
        positive_priors = true_classes != 0  # (N, 8732)

        # LOCALIZATION LOSS

        # Localization loss is computed only over positive (non-background) priors
        loc_loss = self.smooth_l1(predicted_locs[positive_priors], true_locs[positive_priors])  # (), scalar

        # Note: indexing with a torch.uint8 (byte) tensor flattens the tensor when indexing is across multiple dimensions (N & 8732)
        # So, if predicted_locs has the shape (N, 8732, 4), predicted_locs[positive_priors] will have (total positives, 4)

        # CONFIDENCE LOSS

        # Confidence loss is computed over positive priors and the most difficult (hardest) negative priors in each image
        # That is, FOR EACH IMAGE,
        # we will take the hardest (neg_pos_ratio * n_positives) negative priors, i.e where there is maximum loss
        # This is called Hard Negative Mining - it concentrates on hardest negatives in each image, and also minimizes pos/neg imbalance

        # Number of positive and hard-negative priors per image
        n_positives = positive_priors.sum(dim=1)  # (N)
        n_hard_negatives = self.neg_pos_ratio * n_positives  # (N)

        # First, find the loss for all priors
        conf_loss_all = self.cross_entropy(predicted_scores.view(-1, n_classes), true_classes.view(-1))  # (N * 8732)
        conf_loss_all = conf_loss_all.view(batch_size, n_priors)  # (N, 8732)

        # We already know which priors are positive
        conf_loss_pos = conf_loss_all[positive_priors]  # (sum(n_positives))

        # Next, find which priors are hard-negative
        # To do this, sort ONLY negative priors in each image in order of decreasing loss and take top n_hard_negatives
        conf_loss_neg = conf_loss_all.clone()  # (N, 8732)
        conf_loss_neg[positive_priors] = 0.  # (N, 8732), positive priors are ignored (never in top n_hard_negatives)
        conf_loss_neg, _ = conf_loss_neg.sort(dim=1, descending=True)  # (N, 8732), sorted by decreasing hardness
        hardness_ranks = torch.LongTensor(range(n_priors)).unsqueeze(0).expand_as(conf_loss_neg).to(device)  # (N, 8732)
        hard_negatives = hardness_ranks < n_hard_negatives.unsqueeze(1)  # (N, 8732)
        conf_loss_hard_neg = conf_loss_neg[hard_negatives]  # (sum(n_hard_negatives))

        # As in the paper, averaged over positive priors only, although computed over both positive and hard-negative priors
        conf_loss = (conf_loss_hard_neg.sum() + conf_loss_pos.sum()) / n_positives.sum().float()  # (), scalar

        # TOTAL LOSS

        return conf_loss + self.alpha * loc_loss


放在同一个文件夹下面只运行detect.py即可

### detect.py 

from torchvision import transforms
from utils import *
from PIL import Image, ImageDraw, ImageFont

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load model checkpoint
checkpoint = 'checkpoint_ssd300.pth.tar'
checkpoint = torch.load(checkpoint)
start_epoch = checkpoint['epoch'] + 1
print('\nLoaded checkpoint from epoch %d.\n' % start_epoch)
model = checkpoint['model']
model = model.to(device)
model.eval()

# Transforms
resize = transforms.Resize((300, 300))
to_tensor = transforms.ToTensor()
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                                 std=[0.229, 0.224, 0.225])


def detect(original_image, min_score, max_overlap, top_k, suppress=None):
    """
    Detect objects in an image with a trained SSD300, and visualize the results.

    :param original_image: image, a PIL Image
    :param min_score: minimum threshold for a detected box to be considered a match for a certain class
    :param max_overlap: maximum overlap two boxes can have so that the one with the lower score is not suppressed via Non-Maximum Suppression (NMS)
    :param top_k: if there are a lot of resulting detection across all classes, keep only the top 'k'
    :param suppress: classes that you know for sure cannot be in the image or you do not want in the image, a list
    :return: annotated image, a PIL Image
    """

    # Transform
    image = normalize(to_tensor(resize(original_image)))

    # Move to default device
    image = image.to(device)

    # Forward prop.
    predicted_locs, predicted_scores = model(image.unsqueeze(0))

    # Detect objects in SSD output
    det_boxes, det_labels, det_scores = model.detect_objects(predicted_locs, predicted_scores, min_score=min_score,
                                                             max_overlap=max_overlap, top_k=top_k)

    # Move detections to the CPU
    det_boxes = det_boxes[0].to('cpu')

    # Transform to original image dimensions
    original_dims = torch.FloatTensor(
        [original_image.width, original_image.height, original_image.width, original_image.height]).unsqueeze(0)
    det_boxes = det_boxes * original_dims

    # Decode class integer labels
    det_labels = [rev_label_map[l] for l in det_labels[0].to('cpu').tolist()]

    # If no objects found, the detected labels will be set to ['0.'], i.e. ['background'] in SSD300.detect_objects() in model.py
    if det_labels == ['background']:
        # Just return original image
        return original_image

    # Annotate
    annotated_image = original_image
    draw = ImageDraw.Draw(annotated_image)
    font = ImageFont.truetype("./calibril.ttf", 15)

    # Suppress specific classes, if needed
    for i in range(det_boxes.size(0)):
        if suppress is not None:
            if det_labels[i] in suppress:
                continue

        # Boxes
        box_location = det_boxes[i].tolist()
        draw.rectangle(xy=box_location, outline=label_color_map[det_labels[i]])
        draw.rectangle(xy=[l + 1. for l in box_location], outline=label_color_map[
            det_labels[i]])  # a second rectangle at an offset of 1 pixel to increase line thickness
        # draw.rectangle(xy=[l + 2. for l in box_location], outline=label_color_map[
        #     det_labels[i]])  # a third rectangle at an offset of 1 pixel to increase line thickness
        # draw.rectangle(xy=[l + 3. for l in box_location], outline=label_color_map[
        #     det_labels[i]])  # a fourth rectangle at an offset of 1 pixel to increase line thickness

        # Text
        text_size = font.getsize(det_labels[i].upper())
        text_location = [box_location[0] + 2., box_location[1] - text_size[1]]
        textbox_location = [box_location[0], box_location[1] - text_size[1], box_location[0] + text_size[0] + 4.,
                            box_location[1]]
        draw.rectangle(xy=textbox_location, fill=label_color_map[det_labels[i]])
        draw.text(xy=text_location, text=det_labels[i].upper(), fill='white',
                  font=font)
    del draw

    annotated_image.save('mytestOutput.jpg')


if __name__ == '__main__':
    img_path = './0407BigData.png'
    original_image = Image.open(img_path, mode='r')
    original_image = original_image.convert('RGB')
    detect(original_image, min_score=0.2, max_overlap=0.5, top_k=200)


  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣子不辣,英语不难

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值