【深度学习】BERT(Bidirectional Encoder Representations from Transformers) 网友:为了解决pretraining 和 fine tuning 的 mismatch问题。微调:预训练模型基础上,添加全连接,softmax。
【深度学习】transfomer之Add & Norm 和 Feed Forward 前馈网络(feed-forward network)是一种常见的神经网络结构,由一个或多个线性变换和非线性激活函数组成。它的输入是一个词向量,经过一系列线性变换和激活函数处理之后,输出另一个词向量。作用:使模型卷的更深,因为模型要重复N次,Add操作充分考虑了模型复杂度,抵抗模型深度所导致输入信号的衰减,作用:模仿神经元结构,内置两组Linear数据进行转换。作用:把分散的分布重新拉回到正常的分布区间之中。
【深度学习】transformer之Multi-head Attention 非线性变换的本质:改变空间上的位置坐标,任何一个点都可以在维度空间上找到,通过某个手段,让一个不合理的点(位置不合理),变得合理。机器学习的本质:在做一件事情,非线性变换(把一个看起来不合理的东西,通过某个手段(训练模型),让这个东西变得合理)多头的个数用h表示,一般h = 8, 我们常用使用的是8头自注意力.2、然后把Z0-Z7拼接起来,再做一次线性变换(改变维度)得到Z。1、对于X,我们将X分成了8块(8头), 得到Z0-Z7。
【深度学习】transformer之self-attention QK相乘求相似度,K里面哪一个对于Q来说是重要的,做一个Scale(作用:未来做softmax的时候避免出现极端情况),然后做softmax得到概率。新的向量表示了K和V(K==V), 然后这种表示还暗含了Q的信息(于Q而言,K里面最重要的信息),挑出了K里面的关键点。Self-Attention 的关键点在于,不仅仅是K、V、Q来源于同一个X,这三者是同源的,通过X找到X里面的关键点。3、Scale+Softmax 进行缩放和softmax。1、Q、K、V的获取,是通过三个参数。
【深度学习】transformer之 Positional Encoding 注意:与RNN相比,RNN是一个字一个字的输入,自然每个字的循序关系信息就会保留下来,在Encoder中,一句子的每一个字(词)是并行计算的(下一节解释),所以我们在输入的时候需要提前引入位置信息。这样通过与位置编码(positional encoding)相加,则让输入向量x具有了位置信息。奇数的位置是cos, 偶数的位置是sin。i是维度下标,d是总维度。
【深度学习】文章观看顺序 tensorflow安装前向传播与后向传播Embedding之word2vecgensim训练词向量word2vecEncoder&Decoder汉字和数字直接相互翻译BiLSTM介绍K.layers.Masking用法
【深度学习】K.layers.Masking用法 K.layers.Masking 的操作主要用于处理可变长度序列数据,而这些序列中,可能存在填充值,这个操作的目的是在模型训练和处理序列数据时,将填充值部分屏蔽掉,已防止填充值对模型的影响。总体而言,K.layers.Masking 操作有助于处理序列数据中的填充值,使得模型能够更有效地学习和处理不同长度的序列。
【深度学习】前向传播与后向传播 i1与i2分别是两个输入,隐藏层有两个神经元节点h1与h2,偏置项b1与b2,输出层也有 2 个神经元节点o1与o2lh1w1×i1w2×i2b1lh2w3×i1w4×i2b1outh11e−lh11outh21e−lh21lo1w5×outh1w6×outh2b2lo2w7。