xdoj -133(一元稀疏多项式计算器 )
acm双创周彻底破防了,但是不要紧,马上就回家了!!!
现在来分享一下上学期的C语言有点意思的作业。。。。(当然现在回头看当时的自己确实足够无知和愚昧)
题目内容
标题:一元稀疏多项式计算器
类别:综合
时间限制 :2S
内存限制:1000Kb
问题描述
一元 n 次多项式𝑝0𝑋𝑒0 + 𝑝1𝑋𝑒1 + ⋯ + 𝑝𝑖𝑋𝑒𝑖 + ⋯ + 𝑝𝑛𝑋𝑒𝑛 项数较少时成为一元稀疏多项式,
例如:3 + 6𝑋3 − 2𝑋8 + 12𝑋20是一个一元稀疏多项式。设计一个一元稀疏多项式计算器程
序完成两个一元稀疏多项式的加减法,输出结果多项式的各项系数和指数。
输入说明
输入数据第 1 行为 3 个正整数 n,m,t。其中 n 表示第一个多项式的项数,m 表示第二个多项式的项数,t 表示运算类型,0 为加法,1 为减法。数据的第 2 行包含 2n 个整数,每两个整数分别表示第一个多项式每一项的系数和指数;第 3 行包含 2m 个整数,每两个整数分别表示第二个多项式每一项的系数和指数。两个多项式的每项是按照指数递增的形式给出的,例如对于多项式3 + 6𝑋3 − 2𝑋8 + 12𝑋20,对应的输入为 3 0 6 3 -2 8 12 20
输出说明
运算结果按指数从低到高的顺序在以多项式形式(见输出样例)输出结果,注意系数为负数时输出减号,系数为 0 时不输出该项,指数为 1 时不输出指数。
输入样例
6 2 0
1 0 1 1 1 2 1 3 1 4 1 5
-1 3 -1 4
输出样例
1+x+x2+x5
题目分析
这个思路其实也挺简单,加法减法都是在储存系数的数组进行操作,最麻烦的反而是输出。我为输出写了两个函数,first和follow。first是输出结果的第一个多项式子式,follow是输出结果的第一个后面的多项式子式。
(当时我写了好久,总是只对一部分,菜是原罪。求助同学,某大佬建议我学习链表来做。我看了一眼链表,嗯,不想学。然后我继续debug…)
代码
#include<stdio.h>
void first (int cx[],int cz[],int x);
void follow (int cx[],int cz[],int x);
//first是输出结果的第一个多项式子式
//follow是输出结果的第一个后面的多项式子式
int main()
{
int n,m,t;
scanf("%d %d %d",&n,&m,&t);
int ax[n];int az[n];
int bx[m];int bz[m];
//ax,bx都是储存系数的数组,az,bz都是储存指数的数组
for(int i=0;i<n;i++)
scanf("%d %d",&ax[i],&az[i]);
for(int i=0;i<m;i++)
scanf("%d %d",&bx[i],&bz[i]);
if(t==0)//+,加法的话
{
int j=0;
for(;j<n;j++)
{
int k=0;
for(;k<m;k++)
{
if(az[j]==bz[k])
{
ax[j]+=bx[k];bx[k]=0;//先把指数相同的多项式都加到a上面
}
}
}
}
else if(t==1)//-,如果是减法的话
{
//如果能找到指数相同的 ,就合并一下
int j=0;
for(;j<n;j++)
{
int k=0;
for(;k<m;k++)
{
if(az[j]==bz[k])
{
ax[j]-=bx[k];bx[k]=0;//先把指数相同的多项式在a做减法
}
}
}
//对第二个多项式,也就是b
//判断它的每一个子式是不是在a里面找到了指数相同的式子
int q;
for(q=0;q<m;q++)
{
int p;int count =0;//这里的count就是个标记
for(p=0;p<n;p++)
{
if(bz[q]==az[p])
{
count=1;
break;
}
}
if(count==0) //没有找到指数相同的
bx[q]=(-1)*bx[q];//换成负号,最后输出
}
}
//运算结果按指数从低到高的顺序在以多项式形式(见输出样例)输出结果
//两个多项式的每项是按照指数递增的形式给出的
//这里是在找指数的最小和最大
int max=(az[n-1]>bz[m-1])?az[n-1]:bz[m-1];
int min=(az[0]<bz[0])?az[0]:bz[0];
//printf("%d %d\n",max,min);
//for(int a=0;a<n;a++) printf("%d %d\n",ax[a],az[a]);
//for(int a=0;a<m;a++) printf("%d %d\n",bx[a],bz[a]);
int count0=0;//count0算有多少个可以输出的项数
int t0;//t0做标志 ,记录是否找到了u等于az[]
for(int u=min;u<=max;u++)
{
t0=0;//标记
int x=0;
for(;x<n;x++)
{
if(u==az[x]) t0=1;//找到了能输出的指数项
if(u==az[x]&&ax[x]!=0)
{
count0++; //记录是第几个项数
if(count0==1)//第一个
first (ax,az,x);
else if(count0>1)
follow (ax,az,x);
break;
}
}
if(t0==0)//没在az中找到对应的指数
{
int y=0;
for(;y<m;y++)
{
if(u==bz[y]&&bx[y]!=0)
{
count0++;
if(count0==1)
first (bx,bz,y);
else if(count0>1)
follow (bx,bz,y);
break;
}
}
}
}
if(count0==0) printf("0");
return 0;
}
void follow (int cx[],int cz[],int x)//不是第一个
{
if(cz[x]==0) //指数是0
printf("%+d",cx[x]);
else//指数不是0
{
if(cx[x]==1)//系数为1
{
if(cz[x]==1) //指数为1
printf("+x");
else
{
if(cz[x]<0) printf("+x^%+d",cz[x]);
else printf("+x^%d",cz[x]);
}
}
else if(cx[x]==-1)
{
if(cz[x]==1) //指数为1
printf("-x");
else
{
if(cz[x]<0) printf("-x^%+d",cz[x]);
else printf("-x^%d",cz[x]);
}
}
else if(cx[x]!=-1&&cx[x]!=1&&cx[x]!=0)//系数不是0,1,-1
{
if(cz[x]==1) //指数为1
printf("%+dx",cx[x]);
else
{
if(cz[x]<0)
printf("%+dx^%+d",cx[x],cz[x]);
else if(cz[x]>0)
printf("%+dx^%d",cx[x],cz[x]);
}
}
}
}
void first (int cx[],int cz[],int x)
{
if(cz[x]==0)// 指数为0
{
if (cx[x]>0)printf("%d",cx[x]);
else printf("%+d",cx[x]);
}
else//指数不是0
{
if(cx[x]==1)//系数为1
{
if(cz[x]==1) //指数为1
printf("x");
else
{
if(cz[x]<0)printf("x^%+d",cz[x]);
else printf("x^%d",cz[x]);
}
}
else if(cx[x]==-1)
{
if(cz[x]==1) //指数为1
printf("-x");
else
{
if(cz[x]<0)printf("-x^%+d",cz[x]);
else printf("-x^%d",cz[x]);
}
}
else if(cx[x]!=-1&&cx[x]!=1&&cx[x]!=0)//系数不是0,1,-1
{
if(cz[x]==1) //指数为1
{
if(cx[x]>0) printf("%dx",cx[x]);
else printf("%+dx",cx[x]);
}
else
{
if(cz[x]<0)
{
if(cx[x]>0) printf("%dx^%+d",cx[x],cz[x]);
else if(cx[x]<0)printf("%+dx^%+d",cx[x],cz[x]);
}
else if(cz[x]>0)
{
if(cx[x]>0) printf("%dx^%d",cx[x],cz[x]);
else if(cx[x]<0)printf("%+dx^%d",cx[x],cz[x]);
}
}
}
}
}