数据结构:时间复杂度和空间复杂度计算

本文介绍了数据结构的基本概念,包括数据和结构的定义,以及为何需要数据结构。详细探讨了时间复杂度和空间复杂度的概念及其在算法效率中的作用,通过实例展示了如何计算常见算法的时间复杂度和空间复杂度。最后对比了不同算法的空间复杂度和时间复杂度案例。
摘要由CSDN通过智能技术生成

1. 数据结构相关概念

1.1 什么是数据结构

数据结构是由“数据”和“结构”两词组合而来。
什么是数据?
常⻅的数值1、2、3、4.....、教务系统⾥保存的⽤⼾信息(姓名、性别、年龄、学历等 等)、⽹⻚⾥⾁眼可以看到的信息(⽂字、图⽚、视频等等),这些都是数据。
什么是结构?
当我们想要使⽤⼤量使⽤同⼀类型的数据时,通过⼿动定义⼤量的独⽴的变量对于程序来说,可读性⾮常差,我们可以借助数组这样的数据结构将⼤量的数据组织在⼀起,结构也可以理解为组织数据的⽅式。
想要找到草原上名叫“咩咩”的⽺很难,但是从⽺圈⾥找到1号⽺就很简单,⽺圈这样的结构有效将
⽺群组织起来。
概念:
数据结构是计算机存储、组织数据的方式。 数据结构是指相互之间存在⼀种或多种特定关系的数据元素的集合。数据结构反 映数据的内部构成,即数据由那部分构成,以什么⽅式构成,以及数据元素之间呈现的结构。
总结:
1)能够存储数据(如顺序表、链表等结构)
2)存储的数据能够方便查找

1.2 为什么需要数据结构?

如图中所示,不借助排队的⽅式来管理客⼾,会导致客⼾就餐感受差、等餐时间⻓、餐厅营业混乱等情况。
同理,程序中如果不对数据进⾏管理,可能会导致数据丢失、操作数据困难、野指针等情况。通过数据结构,能够有效将数据组织和管理在⼀起。按照我们的⽅式任意对数据进⾏增删改查等操作。
最基础的数据结构:数组。
【思考】有了数组,为什么还要学习其他的数据结构?
假定数组有10个空间,已经使用了5个,向数组中插⼊数据步骤:
        求数组的⻓度,求数组的有效数据个数,向下标为数据有效个数的位置插⼊数据(注意:这里是否要判断数组是否满了,满了还能继续插入吗).....
假设数据量⾮常庞⼤,频繁的获取数组有效数据个数会影响程序执⾏效率。
结论:最基础的数据结构能够提供的操作已经不能完全满⾜复杂算法实现。

2. 什么是时间复杂度和空间复杂度

1)算法效率

算法效率分析分为两种:第一种是时间效率,第二种是空间效率。时间效率被称为时间复杂度, 而空间效率被称作空间复杂度。 时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主 要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间 复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。 所以我们如今已经不需要再特别关注一个算法的空间复杂度。

2) 时间复杂度的概念
时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运
行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机
器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻
烦,所以才有了时间复杂度这个分析方式。一个算法所花费的时间与其中语句的执行次数成正比
例, 算法中的基本操作的执行次数,为算法的时间复杂度。
3)  空间复杂度的概念
空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用 O 渐进表示法

3. 如何计算常见算法的时间复杂度?

3.1 O的渐进表示法

// 请计算一下Func1基本操作执行了多少次?
void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}
Func1 执行的基本操作次数:
                                                 F(N)=N^2+2*N+10
N = 10          F(N) = 130
N = 100          F(N) = 10210
N = 1000          F(N) = 1002010
实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要 大概执行次
数,那么这里我们使用大 O 的渐进表示法。
O 符号( Big O notation ):是用于描述函数渐进行为的数学符号。
推导大 O 阶方法:
1. 用常数1取代运行时间中的所有加法常数。
2. 在修改后的运行次数函数中,只保留最高阶项。
3. 如果最高阶项存在且不是1,则去除与这个项目相乘的常数。得到的结果就是大O阶。
使用大 O 的渐进表示法以后, Func1 的时间复杂度为:
                                                                 O(N^2)
N = 10         F(N) = 100
N = 100         F(N) = 10000
N = 1000         F(N) = 1000000
通过上面我们会发现大 O 的渐进表示法 去掉了那些对结果影响不大的项 ,简洁明了的表示出了执
行次数。
另外有些算法的时间复杂度存在最好、平均和最坏情况:
最坏情况:任意输入规模的最大运行次数 ( 上界 )
平均情况:任意输入规模的期望运行次数
最好情况:任意输入规模的最小运行次数 ( 下界 )
例如:在一个长度为 N 数组中搜索一个数据 x
最好情况: 1 次找到
最坏情况: N 次找到
平均情况: N/2 次找到
在实际中一般情况关注的是算法的最坏运行情况,所以数组中搜索数据时间复杂度为 O(N)

3.2 常见时间复杂度计算举例

实例1

// 计算Func2的时间复杂度?
void Func2(int N)
{
	int count = 0;
	for (int k = 0; k < 2 * N; ++k)
	{
		++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d\n", count);
}

实例2

// 计算Func3的时间复杂度?
void Func3(int N, int M)
{
	int count = 0;
	for (int k = 0; k < M; ++k)
	{
		++count;
	}
	for (int k = 0; k < N; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

实例3

// 计算Func4的时间复杂度?
void Func4(int N)
{
	int count = 0;
	for (int k = 0; k < 100; ++k)
	{
		++count;
	}
	printf("%d\n", count);
}

实例4

// 计算strchr的时间复杂度?
const char * strchr ( const char * str, char character )
{
  while(*str != '\0')
 {
      if(*str == character)
          return str;
      
      ++str;
 }
  
  return NULL;
}

实例5

// 计算BubbleSort的时间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}
实例6
// 计算BinarySearch的时间复杂度?
int BinarySearch(int* a, int n, int x)
{
	assert(a);
	int begin = 0;
	int end = n;
	while (begin < end)
	{
		int mid = begin + ((end - begin) >> 1);
		if (a[mid] < x)
			begin = mid + 1;
		else if (a[mid] > x)
			end = mid;
		else
			return mid;
	}
	return -1;
}

实例7

// 计算阶乘递归Factorial的时间复杂度?
long long Factorial(size_t N)
{
 return N < 2 ? N : Factorial(N-1)*N;
}
实例答案及分析:
1. 实例 1 基本操作执行了 2N+10 次,通过推导大 O 阶方法知道,时间复杂度为 O(N)
2. 实例 2 基本操作执行了 M+N 次,有两个未知数 M N ,时间复杂度为 O(N+M)
3. 实例 3 基本操作执行了 10 次,通过推导大 O 阶方法,时间复杂度为 O(1)
4. 实例 4 基本操作执行最好 1 次,最坏 N 次,时间复杂度一般看最坏,时间复杂度为 O(N)
5. 实例 5 基本操作执行最好 N 次,最坏执行了 (N*(N+1)/2 次,通过推导大 O 阶方法 + 时间复杂度一般看最坏,时间复杂度为 O(N^2)
6. 实例 6 基本操作执行最好 1 次,最坏 O(logN) 次,时间复杂度为 O(logN) ps logN 在算法分析中表示是底数为2 ,对数为 N 。有些地方会写成 lgN 。(建议通过折纸查找的方式讲解 logN 是怎么计算出来的)
7. 实例 7 通过计算分析发现基本操作递归了 N 次,时间复杂度为 O(N)
复杂度对比:

3.3 常见空间复杂度的计算

空间复杂度是对一个算法在运行过程中 临时占用存储空间大小的量度 。空间复杂度不是程序占用
了多少 bytes 的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计
算规则基本跟实践复杂度类似,也使用 O 渐进表示法。
实例 1
// 计算BubbleSort的空间复杂度?
void BubbleSort(int* a, int n)
{
	assert(a);
	for (size_t end = n; end > 0; --end)
	{
		int exchange = 0;
		for (size_t i = 1; i < end; ++i)
		{
			if (a[i - 1] > a[i])
			{
				Swap(&a[i - 1], &a[i]);
				exchange = 1;
			}
		}
		if (exchange == 0)
			break;
	}
}

实例2

// 计算Fibonacci的空间复杂度?
long long* Fibonacci(size_t n)
{
	if (n == 0)
		return NULL;
	long long* fibArray = (long long*)malloc((n + 1) * sizeof(long long));
	fibArray[0] = 0;
	fibArray[1] = 1;
	for (int i = 2; i <= n; ++i)
	{
		fibArray[i] = fibArray[i - 1] + fibArray[i - 2];
	}
	return fibArray;
}

实例3

// 计算阶乘递归Factorial的空间复杂度?
long long Factorial(size_t N)
{
     return N < 2 ? N : Factorial(N-1)*N;
}
实例答案及分析:
1. 实例 1 使用了常数个额外空间,所以空间复杂度为 O(1)
2. 实例 2 动态开辟了 N 个空间,空间复杂度为 O(N)
3. 实例 3 递归调用了 N 次,开辟了 N 个栈帧,每个栈帧使用了常数个空间。空间复杂度为 O(N)
  • 35
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值