[NOIP1998 提高组] 车站
题目描述
火车从始发站(称为第 1 1 1 站)开出,在始发站上车的人数为 a a a,然后到达第 2 2 2 站,在第 2 2 2 站有人上、下车,但上、下车的人数相同,因此在第 2 2 2 站开出时(即在到达第 3 3 3 站之前)车上的人数保持为 a a a 人。从第 3 3 3 站起(包括第 3 3 3 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第 n − 1 n-1 n−1 站),都满足此规律。现给出的条件是:共有 n n n 个车站,始发站上车的人数为 a a a,最后一站下车的人数是 m m m(全部下车)。试问 x x x 站开出时车上的人数是多少?
输入格式
输入只有一行四个整数,分别表示始发站上车人数 a a a,车站数 n n n,终点站下车人数 m m m 和所求的站点编号 x x x。
输出格式
输出一行一个整数表示答案:从 x x x 站开出时车上的人数。
样例 #1
样例输入 #1
5 7 32 4
样例输出 #1
13
提示
对于全部的测试点,保证 1 ≤ a ≤ 20 1 \leq a \leq 20 1≤a≤20, 1 ≤ x ≤ n ≤ 20 1 \leq x \leq n \leq 20 1≤x≤n≤20, 1 ≤ m ≤ 2 × 1 0 4 1 \leq m \leq 2 \times 10^4 1≤m≤2×104。
NOIP1998 提高组 第一题
def main():
a, n, m, x = map(int, input().split())
# 初始化斐波那契数列
f = [0] * 20 # 给定提示中最大n为20,所以这里初始化长度为20
f[1], f[2] = 1, 1
# 计算斐波那契数列值直到n-1
for i in range(3, n):
f[i] = f[i - 1] + f[i - 2]
# 根据公式计算b值
b = (m - (f[n - 3] + 1) * a) // (f[n - 2] - 1)
# 根据题目要求计算x站开出时车上的乘客数量
result = (f[x - 2] + 1) * a + (f[x-1] - 1) * b
print(result)
if __name__ == "__main__":
main()