洛谷[NOIP1998 提高组] 车站

[NOIP1998 提高组] 车站

题目描述

火车从始发站(称为第 1 1 1 站)开出,在始发站上车的人数为 a a a,然后到达第 2 2 2 站,在第 2 2 2 站有人上、下车,但上、下车的人数相同,因此在第 2 2 2 站开出时(即在到达第 3 3 3 站之前)车上的人数保持为 a a a 人。从第 3 3 3 站起(包括第 3 3 3 站)上、下车的人数有一定规律:上车的人数都是前两站上车人数之和,而下车人数等于上一站上车人数,一直到终点站的前一站(第 n − 1 n-1 n1 站),都满足此规律。现给出的条件是:共有 n n n 个车站,始发站上车的人数为 a a a,最后一站下车的人数是 m m m(全部下车)。试问 x x x 站开出时车上的人数是多少?

输入格式

输入只有一行四个整数,分别表示始发站上车人数 a a a,车站数 n n n,终点站下车人数 m m m 和所求的站点编号 x x x

输出格式

输出一行一个整数表示答案:从 x x x 站开出时车上的人数。

样例 #1

样例输入 #1

5 7 32 4

样例输出 #1

13

提示

对于全部的测试点,保证 1 ≤ a ≤ 20 1 \leq a \leq 20 1a20 1 ≤ x ≤ n ≤ 20 1 \leq x \leq n \leq 20 1xn20 1 ≤ m ≤ 2 × 1 0 4 1 \leq m \leq 2 \times 10^4 1m2×104

NOIP1998 提高组 第一题

在这里插入图片描述

def main():
    a, n, m, x = map(int, input().split())

    # 初始化斐波那契数列
    f = [0] * 20  # 给定提示中最大n为20,所以这里初始化长度为20
    f[1], f[2] = 1, 1

    # 计算斐波那契数列值直到n-1
    for i in range(3, n):
        f[i] = f[i - 1] + f[i - 2]
    # 根据公式计算b值
    b = (m - (f[n - 3] + 1) * a) // (f[n - 2] - 1)

    # 根据题目要求计算x站开出时车上的乘客数量
    result = (f[x - 2] + 1) * a + (f[x-1] - 1) * b

    print(result)
if __name__ == "__main__":
    main()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值