最长递增子序列 python leetcode 动态规划

本文介绍了如何使用动态规划解决 LeetCode 上的「最长递增子序列」问题。通过一个具体的例子解释了动态规划的思路,并强调了本题与连续递增子序列的区别。此外,提供了理解和优化代码的技巧,以及避免陷入无效学习的建议。
摘要由CSDN通过智能技术生成

题目链接

https://leetcode-cn.com/problems/longest-increasing-subsequence/

题目介绍


最长递增子序列

给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。

子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。

示例 1:

输入:nums = [10,9,2,5,3,7,101,18]

输出:4

解释:最长递增子序列是 [2,3,7,101],因此长度
为 4 。


动态规划

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        n = len(
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值