创意:将现有想法进行某种组合
目标检测任务与安全帽佩戴检测
目标检测任务
近几年来,目标检测算法取得了很大的突破,目标检测的任务是找出图像中所有感兴趣的目标,确定其位置和大小,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观和形态,再加上成像时光照等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。
安全帽佩戴检测模型
对于图像识别,采用传统的算法(opencv的一些算法),判断形状、颜色等等,我们在实验室和办公场所做测试,效果还不错,和容易识别出来。 一旦到了工业现场,图像完全不行,连人和车都识别不出来。在不同光线下不论采用什么颜色空间(RGB、HSV什么)都无法分离出合理的色彩,更不要提判断和检测了。有感于实际的现场环境,决定放弃传统的算法,拿起深度学习的工具,来搞定这个项目。
安全帽佩戴检测是计算机视觉在工业安全领域应用的典型场景。
基于PaddleX/PaddleDetection+Paddle+Lite,也可以实现安全帽检测模型在树莓派上的部署。
以终为始-场景驱动项目
从问题找到想解决的场景,为实现某个特定的场景的解决方案,探索形成一系列“创意”项目。
1、一个想法
结合实际问题,产生关于一个场景的想法。
2、尝试验证
可以从易到难,从最熟悉的思路做起,开始尝试解决方案。
3、用项目记录进展
一个孤立的项目不能形成一套解决方案,但可以逐步探索,每一次探索可能就产生了新的项目
4、从飞桨社区获取灵感