国科大-2023秋-电子学院-信息论-试题回忆
两个小时之前刚考完,趁着有印象给学弟学妹一点信息
1.熵的计算
七局四胜制下,A、B两个选手单次获胜概率相同,X是例如AAAA、ABABAA这样的每局获胜方组成的一个词条,Y为比赛局数:
计算
H
(
X
∣
Y
)
、
H
(
Y
∣
X
)
、
H
(
X
)
、
H
(
Y
)
H(X|Y) 、H(Y|X) 、H(X)、H(Y)
H(X∣Y)、H(Y∣X)、H(X)、H(Y)
2.相对熵、平均码长
给定
p
和
q
p和q
p和q的概率分布,以及
C
1
C_1
C1、
C
2
C_2
C2 两个编码方式:
1)计算
D
(
p
∣
∣
q
)
、
D
(
q
∣
∣
p
)
D(p||q)、D(q||p)
D(p∣∣q)、D(q∣∣p)
2)分别使用两种编码方式对
p
、
q
p、q
p、q进行编码得到的码长。
3.汉明码
给定校验矩阵H:
1)写出生成矩阵G。
2)对给定的信息序列进行编码、
3)给一个接收序列,要求对其解码
4.证明题
要求证明:
1)率失真函数在汉明失真下的下界
2)在输入为等概分布时,率失真函数可以取到下界
5.信道容量
给定含参的Z形信道:
1.写出转移函数
2.证明n个串联Z形信道等效于一个以原参数的n次方为参数的Z形信道
3.计算参数确定条件下的信道容量
考试反馈
第一题不难,主要的操作量来自计算,计算器很重要。
第二题第三题送分题,看得出来老师不想有任何一个人这两题拿不到40分
之前复习的时候没有想到有证明题,要证明的命题我都是当结论用的…所以第四题卡壳了,第10章的习题是有的,可以看一下证明过程。
第五题将转移矩阵正交分解即可证明,和课本信道容量那一章节的某条课后习题一个思路。