D. Range = √Sum

题意:

构造一个长度为n,并且所有数都不相同的序列,并且满足

max(a_{1},a_{2},...,a_{n})-min(a_{1},a_{2},...,a_{n})=\sqrt{a_{1}+a_{2}+.....a_{n}}

题解:

将题意变形可得,求最大值和最小值的平方为所有数之和。我们可以构造一个最大值和最小值的差为2*n的数列来算答案,为什么不构造差为n的?因为如果差为n,那数列基本上就定下了,每次只能在n*(n+1)/2的基础上加n。而构造差为2*n的可以方便很多,然后我们来凑所有数和为2*n的平方,易得构造出的平均数要是4*n,所以围绕4*n,并且最大差一定是2*n来构造数列即可。

代码:

#include<bits/stdc++.h>

using namespace std;

int main() {
    int t;
    cin >> t;
    while (t--) {
        long long n;
        cin >> n;
        long long x = 4 * n;
        if (n % 2) {
            cout << x << " ";
        }
        for (int i = 0; i < n / 2; i++) {
            cout << 3 * n + i << " ";
            cout << 5 * n - i << " ";
        }
        cout << endl;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值