Hbase安装与配置

了解Hbase

HBase特性

  • 数据容量大,单表可以有百亿行、百万列,数据矩阵横向和纵向两个维度所支持的数据量级都非常具有弹性
  • 多版本,每一列存储的数据可以有多个version
  • 稀疏性,为空的列并不占用存储空间,表可以设计的非常稀疏
  • 读写强一致,非 “最终一致性” 的数据存储,使得它非常适合高速的计算聚合
  • 自动分片,通过Region分散在集群中,当行数增长的时候,Region也会自动的切分和再分配
  • Hadoop/HDFS集成,和HDFS开箱即用,不用太麻烦的衔接。扩展性强,只需要增加DataNode就可以增加存储空间
  • 丰富的“简洁,高效”API,提供了Thrift/REST API,Java API等方式对HBase进行访问
  • 块缓存,布隆过滤器,可以高效的列查询优化
  • 操作管理,Hbase提供了内置的web界面来操作,还可以监控JMX指标
  • 高可靠,保证了系统的容错能力,WAL机制使得数据写入时不会因为集群异常而导致写入数据丢失。故HBase选择了CAP中的CP
  • 面向列的存储和权限控制,并支持独立检索,可以动态的增加列列式存储:其数据在表中是按照某列存储的,这样在查询只需要少数几个字段的时候,能大大减少读取的数据量
  • 高性能,具备海量数据的随机访问和实时读写能力写方面:底层的 LSM 数据结构和 Rowkey
    有序排列等架构上的独特设计,使得HBase具有非常高的写入性能。读方面:region
    切分、主键索引和缓存机制使得HBase在海量数据下具备一定的随机读取性能,针对 Rowkey 的查询能够达到毫秒级别

综上,HBase是一个高可靠、高性能、面向列、可伸缩的分布式数据库,是谷歌Bigtable的开源实现。主要用来存储非结构化和半结构化的松散数据。HBase的目标是处理非常庞大的表,可以通过水平扩展的方式,利用廉价计算机集群处理由超过10亿行数据和数百万列元素组成的数据表。更多内容详见官方文档。

下载

注:博主使用的Hadoop版本为2.9.2,请注意版本问题。

下载地址:https://mirrors.tuna.tsinghua.edu.cn/apache/hbase/2.2.6/

在这里插入图片描述

安装

下载完成之后,将压缩包解压到/home/apps/目录下,将解压之后的文件名改为hbase

[root@master dev]# tar - zxvf hbase-2.2.6-bin.tar.gz
[root@master dev]# mkdir - p /home/apps
[root@master dev]# mv hbase-2.2.6 hbase
[root@master dev]# mv hbase /home/apps/
[root@master dev]# cd /home/apps/
[root@master home]# ll
total 12
drwxr-xr-x. 7 root   root   4096 Jan 21 17:13 hbase
drwxr-xr-x. 9 centos centos 4096 Dec 19  2017 sqoop
drwxr-xr-x. 8 root   root   4096 Jan 15 20:58 zookeeper

配置

hbase需要配置两个文件hbase-env.sh、hbase-site.xml文件

修改conf目录下面hbase-env.sh文件

[root@master home]# cd conf
[root@master conf]# vi hbase-env.sh
#!/usr/bin/env bash
#
#/**
# * Licensed to the Apache Software Foundation (ASF) under one
# * or more contributor license agreements.  See the NOTICE file
# * distributed with this work for additional information
# * regarding copyright ownership.  The ASF licenses this file
# * to you under the Apache License, Version 2.0 (the
# * "License"); you may not use this file except in compliance
# * with the License.  You may obtain a copy of the License at
# *
# *     http://www.apache.org/licenses/LICENSE-2.0
# *
# * Unless required by applicable law or agreed to in writing, software
# * distributed under the License is distributed on an "AS IS" BASIS,
# * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# * See the License for the specific language governing permissions and
# * limitations under the License.
# */

# Set environment variables here.

# This script sets variables multiple times over the course of starting an hbase process,
# so try to keep things idempotent unless you want to take an even deeper look
# into the startup scripts (bin/hbase, etc.)

# The java implementation to use.  Java 1.8+ required.
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_221

# Extra Java CLASSPATH elements.  Optional.
# The maximum amount of heap to use. Default is left to JVM default.
# export HBASE_HEAPSIZE=1G

# Uncomment below if you intend to use off heap cache. For example, to allocate 8G of
# offheap, set the value to "8G".
# export HBASE_OFFHEAPSIZE=1G

# Extra Java runtime options.
# Below are what we set by default.  May only work with SUN JVM.
# For more on why as well as other possible settings,
# see http://hbase.apache.org/book.html#performance
export HBASE_OPTS="$HBASE_OPTS -XX:+UseConcMarkSweepGC"

# This enables basic gc logging to the .out file.
# export SERVER_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"

# This enables basic gc logging to its own file.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
# export SERVER_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:<FILE-PATH>"

# This enables basic GC logging to its own file with automatic log rolling. Only applies to jdk 1.6.0_34+ and 1.7.0_2+.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .

# Uncomment one of the below three options to enable java garbage collection logging for the client processes.

# This enables basic gc logging to the .out file.
# export CLIENT_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps"

# This enables basic gc logging to its own file.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .
# export CLIENT_GC_OPTS="-verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps -Xloggc:<FILE-PATH>"

# This enables basic GC logging to its own file with automatic log rolling. Only applies to jdk 1.6.0_34+ and 1.7.0_2+.
# If FILE-PATH is not replaced, the log file(.gc) would still be generated in the HBASE_LOG_DIR .

# See the package documentation for org.apache.hadoop.hbase.io.hfile for other configurations
# needed setting up off-heap block caching.

# Uncomment and adjust to enable JMX exporting
# See jmxremote.password and jmxremote.access in $JRE_HOME/lib/management to configure remote password access.
# More details at: http://java.sun.com/javase/6/docs/technotes/guides/management/agent.html
# NOTE: HBase provides an alternative JMX implementation to fix the random ports issue, please see JMX
# section in HBase Reference Guide for instructions.

# export HBASE_JMX_BASE="-Dcom.sun.management.jmxremote.ssl=false -Dcom.sun.management.jmxremote.authenticate=false"
# export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10101"
# export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10102"
# export HBASE_THRIFT_OPTS="$HBASE_THRIFT_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10103"
# export HBASE_ZOOKEEPER_OPTS="$HBASE_ZOOKEEPER_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10104"
# export HBASE_REST_OPTS="$HBASE_REST_OPTS $HBASE_JMX_BASE -Dcom.sun.management.jmxremote.port=10105"

# File naming hosts on which HRegionServers will run.  $HBASE_HOME/conf/regionservers by default.
# export HBASE_REGIONSERVERS=${HBASE_HOME}/conf/regionservers

# Uncomment and adjust to keep all the Region Server pages mapped to be memory resident
#HBASE_REGIONSERVER_MLOCK=true
#HBASE_REGIONSERVER_UID="hbase"

# File naming hosts on which backup HMaster will run.  $HBASE_HOME/conf/backup-masters by default.
# export HBASE_BACKUP_MASTERS=${HBASE_HOME}/conf/backup-masters

# Extra ssh options.  Empty by default.
# export HBASE_SSH_OPTS="-o ConnectTimeout=1 -o SendEnv=HBASE_CONF_DIR"

# Where log files are stored.  $HBASE_HOME/logs by default.
# export HBASE_LOG_DIR=${HBASE_HOME}/logs

# Enable remote JDWP debugging of major HBase processes. Meant for Core Developers
# export HBASE_MASTER_OPTS="$HBASE_MASTER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8070"
# export HBASE_REGIONSERVER_OPTS="$HBASE_REGIONSERVER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8071"
# export HBASE_THRIFT_OPTS="$HBASE_THRIFT_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8072"
# export HBASE_ZOOKEEPER_OPTS="$HBASE_ZOOKEEPER_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8073"
# export HBASE_REST_OPTS="$HBASE_REST_OPTS -Xdebug -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8074"

# A string representing this instance of hbase. $USER by default.
# export HBASE_IDENT_STRING=$USER

# The scheduling priority for daemon processes.  See 'man nice'.
# export HBASE_NICENESS=10

# The directory where pid files are stored. /tmp by default.
# export HBASE_PID_DIR=/var/hadoop/pids

# Seconds to sleep between slave commands.  Unset by default.  This
# can be useful in large clusters, where, e.g., slave rsyncs can
# otherwise arrive faster than the master can service them.
# export HBASE_SLAVE_SLEEP=0.1

# Tell HBase whether it should manage it's own instance of ZooKeeper or not.
export HBASE_MANAGES_ZK=false

# The default log rolling policy is RFA, where the log file is rolled as per the size defined for the
# RFA appender. Please refer to the log4j.properties file to see more details on this appender.
# In case one needs to do log rolling on a date change, one should set the environment property
# HBASE_ROOT_LOGGER to "<DESIRED_LOG LEVEL>,DRFA".
# For example:
# HBASE_ROOT_LOGGER=INFO,DRFA
# The reason for changing default to RFA is to avoid the boundary case of filling out disk space as
# DRFA doesn't put any cap on the log size. Please refer to HBase-5655 for more context.

# Tell HBase whether it should include Hadoop's lib when start up,
# the default value is false,means that includes Hadoop's lib.
# export HBASE_DISABLE_HADOOP_CLASSPATH_LOOKUP="true"

修改hbase-env.sh

export HBASE_MANAGES_ZK=false (hbase有自带的zookeeper,设为false,将不在使用hbase自带的zookeeper)
export JAVA_HOME=/usr/local/jdk/jdk1.8.0_221(jdk安装路径)

修改hbase-site.xml文件

[root@master conf]# vi hbase-site.xml

添加以下配置

<property>
    <name>hbase.rootdir</name>
    <value>hdfs://master:9000/hbase</value>
</property>
<!--单机模式不需要配置,使用集群需要配置此项,值为true,表示为多节点分布-->
<property>
    <name>hbase.cluster.distributed</name>
    <value>true</value>
</property>
<!-- zookeeper的端口号-->
<property>
    <name>hbase.zookeeper.property.clientPort</name>
    <value>2181</value>
</property>
<!-- 设置备份数 -->
<property>
    <name>dfs.replication</name>
    <value>1</value>
</property>
<!--设置zookeeper各节点,单节点不需要配置多个-->
<property>
    <name>hbase.zookeeper.quorm</name>
    <value>master:2181,slave1:2181,slave2:2181</value>
</property>
<!--设置端口号默认60000-->
<property>
      <name>hbase.master.port</name>
      <value>60000</value>
</property>
<!--指定zookeeper的dataDir路径(与zookeeper中的dataDir路径一样)-->
<property>
      <name>hbase.zookeeper.property.dataDir</name>
      <value>/home/apps/zookeeper/data</value>
</property>
<!--指定zookeeper的dataLogDir路径(与zookeeper中的dataLogDir路径一样)-->
<property>
      <name>hbase.zookeeper.property.dataDir</name>
      <value>/home/apps/zookeeper/logs</value>
</property>

修改环境变量:

[root@master conf]# vi /etc/profile

添加配置

export HBASE_HOME=/home/hbase-1.4.13
export PATH=$PATH:$HBASE_HOME/bin

将环境变量立即生效

[root@master conf]# source /etc/profile

启动

注:启动hbase之前需要将Hadoop和zookeeper启动

[root@master ~]# start-hbase.sh
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.9.2/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/apps/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
running master, logging to /home/apps/hbase/logs/hbase-root-master-XAA01.out
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.9.2/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/home/apps/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
: running regionserver, logging to /home/apps/hbase/logs/hbase-root-regionserver-XAA01.out
: SLF4J: Class path contains multiple SLF4J bindings.
: SLF4J: Found binding in [jar:file:/home/hadoop/hadoop-2.9.2/share/hadoop/common/lib/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
: SLF4J: Found binding in [jar:file:/home/apps/hbase/lib/client-facing-thirdparty/slf4j-log4j12-1.7.25.jar!/org/slf4j/impl/StaticLoggerBinder.class]
: SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
: SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
[root@master ~]# 

查看是否启动成功

[root@master ~]# jps
4050 NameNode
12804 QuorumPeerMain
9141 HRegionServer
4503 SecondaryNameNode
4248 DataNode
9736 Jps
8985 HMaster
4892 NodeManager
4751 ResourceManager

出现HRegionServer,启动成功

结语:大数据Hadoop笔记 Hbase 安装与配置

已标记关键词 清除标记
相关推荐
Hbase安装配置 1、前提:要有装好的hdfs分布式文件系统和zookeeper集群 2、各台linux机器上传hbase安装包:hbase-0.98.12.1-hadoop2-bin.tar.gz 3、解压jar包:tar -zxvf hbase-0.98.12.1-hadoop2-bin.tar.gz 4、把hadoop的hdfs-site.xml和core-site.xml 放到hbase/conf下: cd root/hadoop/etc/hadoop scp -r hdfs-site.xml /root/hbase-0.98.12.1-hadoop2/conf/ scp -r core-site.xml /root/hbase-0.98.12.1-hadoop2/conf/ 4、配置hbase集群,要修改3个文件(首先zk集群已经安装好了) 5、修改hbase-env.sh export JAVA_HOME=/usr/java/jdk1.7.0_xxx (1)、告诉hbase使用外部的zk export HBASE_MANAGES_ZK=false 6、修改vim hbase-site.xml <property> <name>hbase.rootdir</name> <value>hdfs://namenade/hbase</value>//this is your real nodename. </property> <property> <name>hbase.zookeeper.property.dataDir</name> <value>/opt/zookeeper</value> </property> <property> <name>hbase.cluster.distributed</name> <value>true</value> </property> <property> <name>hbase.zookeeper.quorum</name> <value>node11,node12,node13</value> </property> 7、修改vim regionservers (指定regionserver) Node11 node12 node13 8、指定 standby 的hbase的副节点,注意:该文件不存在,需要创建 vim backup-masters Node12 9、拷贝hbase到其他节点或机器 Cd /root/hbase-0.98.12.1-hadoop2 scp -r conf node12:/root/hbase-0.98.12.1-hadoop2/ scp -r conf node13:/root/hbase-0.98.12.1-hadoop2/ 10、设置私钥并同步时间。 11、启动所有的hbase (1)、分别启动zk /home/zookeeper-xxx/bin/./zkServer.sh start (2)、启动hdfs集群 /root/hadoop/sbin/./start-dfs.sh (3)、启动hbase,在主节点上运行: /root/hbase-0.98.12.1-hadoop2/bin/./start-hbase.sh 12、通过浏览器访问hbase管理页面 Node11:60010 Node12:60010 Node11:50070 Node12:50070 13、为保证集群的可靠性,要启动多个HMaster hbase-daemon.sh start master
©️2020 CSDN 皮肤主题: 1024 设计师:白松林 返回首页