leetcode:279. 完全平方数
class Solution {
public int numSquares(int n) {
//dp[j]:和为j的完全平方数的最少数量为dp[j]
int[] dp = new int[n+1];
//递推公式
//dp[j] =Math.min( dp[j - i*i] +1,dp[j])
int max= Integer.MAX_VALUE;
for(int i = 0;i< dp.length;i++)
{
dp[i] = max;
}
dp[0] = 0;
for(int i = 1;i * i <=n;i++){
for(int j = i*i; j<=n;j++){
dp[j] = Math.min( dp[j - i*i] +1,dp[j]);
}
}
return dp[n];
}
}
leetcode:322. 零钱兑换
class Solution {
public int coinChange(int[] coins, int amount) {
//dp[j] 总数是j的最少硬币数dp[j]
//递推公式
//dp[j] = Math.min(dp[j],dp[j-coins[i]] + 1)
int[] dp = new int[amount + 1];
//初始化
int max = Integer.MAX_VALUE;
//初始化dp数组为最大值,防止推导值被覆盖
for (int j = 0; j < dp.length; j++) {
dp[j] = max;
}
dp[0] =0;
//这里是求总和组合数
for(int i =0;i<coins.length;i++){
for(int j = coins[i]; j<=amount;j++){
if (dp[j-coins[i]] == max) continue;
dp[j] = Math.min(dp[j],dp[j-coins[i]] + 1);
}
}
return dp[amount] == max ? -1 : dp[amount];
}
}
爬楼梯(进阶版)
题目描述
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。每次你可以爬至多m (1 <= m < n)个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
输入描述 输入共一行,包含两个正整数,分别表示n, m 输出描述 输出一个整数,表示爬到楼顶的方法数。
import java.util.*;
public class Main {
public static void main (String[] args) {
//dp[i] 爬到第i层阶梯 共有dp[i]种方法
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int m = sc.nextInt();
int[] dp = new int[n+1];
dp[0] = 1;
for (int i = 1; i <= n ; i++){//背包
for (int j = 1; j <= m; j++){//物品
if(i >= j)
dp[i] += dp[i - j];
}
}
System.out.print(dp[n]);
}
}