Crazy Binary String( 0、1出现次数相等的最长子串(前缀和d[i]==0或者d[j]==d[i])

文章讨论了一种寻找0和1出现次数相等的最长子串和最长子序列的方法。它提到了子串要求是连续的,而子序列则不需连续。通过前缀和思想和动态规划,可以计算出01数量相等的子串。文章强调了初始化变量的重要性,以及在处理过程中要涵盖所有可能的情况。
摘要由CSDN通过智能技术生成

Crazy Binary String( 0、1出现次数相等的最长子串和最长子序列)

首先明白子串和子序列的区别,子串要求是原字符串中一段连续的元素,子序列是原字符串中若干个保持原来相对次序的元素
对于子序列肯定好说,直接就是0和1取个最大值再乘以2就是答案。
1、前缀和数组下标都从1开始,可用string字符串下标总从0开始,两种解决方法

	char s[MAX];
	scanf("%s",s+1);
	string s;
	cin>>s;
	s="#"+s;

2、类似前缀和的思想,判断一段子串【l,r】中01的个数是否相等

记得之前做过一道dp题,求 元素累加和等于k的倍数的子串还是啥的,具体可能记错了,反正有两种情况,一种是前缀和膜k为0的位置i(子串是[1,i],第二种是 sum[j]==sum[i],i<j,子串是[i,j]

开个数组d[N],d[i]表示s[1~ i ] 这一段 0 和1 数量的差值,求01数量相等的子串,也有两种情况 ,一是 d[i]==0,这里子串是 【1,i】,二是 d[j]==d[i],i<j,子串是[i,j]
这次遗漏的是情况一,要么初始化mp[0]=0,要么 d[i]==0参与到res的大小比较

if(d[i]==0){
			res=max(res,i);
			continue;
		}

3、res初始化应该为0,不是-1,假使找不到以上两种情况中的任何一种,不进入对res的值的改变,那res就一直为-1了,没有机会纠正到0

#include <bits/stdc++.h>
using namespace std;
int n;
const int N=1e5+10;
int d[N];
int num[2];
map<int,int> mp;
signed main(){
	string s;
	cin>>n;
	cin>>s;
	s="#"+s;
	for(int i=1;i<=n;i++){
		num[s[i]-'0']++;
		if(s[i]=='0'){
			d[i]=d[i-1]+1;//d[j]是01的差
		}
		else d[i]=d[i-1]-1;
	}
	int ans = min(num[0],num[1])*2;
//	for(int i=1;i<=n;i++){
//		int c1=i-d[i];//前i个数 1的数量
//		d[i]=d[i]-c1;
//	
//	}
//	for(int i=1;i<=n;i++){
//		cout<<a[i]<<' ';
//	}
//	cout<<endl;
//		for(int i=1;i<=n;i++){	
//		cout<<d[i]<<' ';
//	}
//	cout<<endl;
	int res=0;//不可以初始化为-1
	mp[0]=0;//不要忘记初始化这种情况,在串为空的时候就是满足条件的情况
	for(int i=1;i<=n;i++){
		if(mp.count(d[i])){
			res=max(res,i-mp[d[i]]);
		}
		else mp[d[i]]=i;//保存最远的就成
	}
	cout<<res<<" "<<ans;

	return 0;
}
#include <bits/stdc++.h>
using namespace std;
int n;
const int N=1e5+10;
int d[N];
int num[2];
map<int,int> mp;
signed main(){
	string s;
	cin>>n;
	cin>>s;
	s="#"+s;
	for(int i=1;i<=n;i++){
		num[s[i]-'0']++;
		if(s[i]=='0'){
			d[i]=d[i-1]+1;//d[j]是01的差
		}
		else d[i]=d[i-1]-1;
	}
	int ans = min(num[0],num[1])*2;
	int res=0;//不可以初始化为-1
	for(int i=1;i<=n;i++){
		if(d[i]==0){
			res=max(res,i);
			continue;
		}
		if(mp.count(d[i])){
			res=max(res,i-mp[d[i]]);
		}
		else mp[d[i]]=i;//保存最远的就成
	}
	cout<<res<<" "<<ans;

	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值