KMP的简单解释

一、作用:       

        KMP用于字符串的模式匹配,通俗说法就是判断一个字符串是不是另外一个字符串的子串。

二、分析:

 1、首先,回想一下字符串的模式最简单思维是什么?即是:BF算法。BF算法的基本思维是:用来两个计数指针分别代表主串和模式串中正在比较的位置。 当匹配失败时,我们会让主串的计数指针退回到本次开始匹配的下一位,让模式串的计数指针指向初始的位置从初始位置开始,再次匹配,一直到匹配成功,或者,主串结束。先看看BF的代码。

#include <stdio.h>
#include <string.h>


const int N = 1e5 + 10;


int BF(char a[], char b[])
{
	int i = 0, j = 0;
	while(i < strlen(a) && j < strlen(b))
	{
		if(a[i] == b[i])
		{
			i++;
			j++;	
		}	
		else 
		{
			i = i - j + 1;
			j = 0;
		}
	}
	if(j == strlen(b)) return 1; // 匹配成功平 
	else return 0; // 匹配失败 
}


int main()
{
	char a[N], b[N];
	scanf("%s %s", a, b);
	
	if(BF(a, b) == 1) printf("yes\n");
	else printf("no\n"); 
}

2、我们可以很容易想到,在每次不匹配的之前一段时间是能够进行匹配的,如果我们每次匹配失败我们都要重新头开始匹配的话,那我们之前的那一段匹配不就成了无用功吗?我们可以想办法将他们应用起来

加入先在主串是:ababcabcacbab,模式串是abacb
我们第一次匹配时: 
ababcabcabacb
abac
这个时候匹配失败,按照BF的做法,我们应该回到b处重新开始匹配,我们可以发现主串的12位置的字母和34位置的字母是相等的,我们下一次匹配可以保持主串不动,让子串的第二个字符b和主串此时的位置的字符b匹配然后继续后移匹配。
之后的步骤
ababcabcabacb
  aba
ababcabcabacb
    a
ababcabcabacb
     aba
ababcabcabacb
       a
ababcabcabacb
        abacb
匹配成功!

3、在上述匹配中,我们实际上寻找的是模式串中,不匹配位置之前的最长的前面与后面相等的部分(即最大前缀和后缀),我们只需要将最大前缀移动到对应的最大后缀的位置处,即可以在主串保持不后退的情况下,让模式匹配继续,这样我们就将之前匹配失败时的东西也用上了。这就是kmp实现的基本思想。

4、从上面我们可以看出,kmp的核心即是求最大前后缀。我们一般使用next数组来储存计数指针移动到某个位置时的最大前缀初始位置。

举例说明:现给定字符串“abcabcacbc”

模式串abcabcacbc
next-1000122334

我们默认next数组的第一项为-1,当匹配的时候就让next数组加1,不匹配的时候就让next等于上一个位置的next。即:

void GetNext(string t)
{
	int len = t.length();
	ne[0] = -1;
	int k = -1; //  表示从头开始 
	int j = 0;
	
	while(j < len - 1)
	{
		// p[k]表示前缀,p[j]表示后缀
		if(k == -1 || t[j] == t[k])
		{
			k++; // 记录前缀的位置
			j++; // 模式串现在移动到的位置
			ne[j] = k;
		 } 
		 else
		 {
		 	k = ne[k]; // 结束的位置前缀等于自己。
		 }
	 } 
	
}

5、之后便是用next数组来进行模式匹配了

整个代码如下:

#include <iostream>
#include <cstring>

using namespace std;

const int N = 10010;

int ne[N];

void GetNext(string t)
{
	int len = t.length();
	ne[0] = -1;
	int k = -1; //  表示从头开始 
	int j = 0;
	
	while(j < len - 1)
	{
		// p[k]表示前缀,p[j]表示后缀
		if(k == -1 || t[j] == t[k])
		{
			k++;
			j++;
			ne[j] = k;
		 } 
		 else
		 {
		 	k = ne[k];
		 }
	 } 
	
}

int KMP(string s, string t)
{
	int i = 0, j = 0;
	int k1 = s.length();
	int k2 = t.length();
	
	while(i < k1 && j < k2)
	{
		if(j == -1 || s[i] == t[j])
		{
			i++;
			j++;
		}
		else
		{
			j = ne[j];
		}
	}
	if(j == k2) return i - j;
	return -1;
}

int main()
{
	string s;
	cin >> s;
	
	int n;
	cin >> n;
	while(n--)
	{
		string t;
		cin >> t;
		
		GetNext(t);
		
		if(KMP(s, t) == -1) cout << "NOT FOUND";
		else
		{
			cout << "Yes";
		}
		cout << endl; 
	}
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值