一、作用:
KMP用于字符串的模式匹配,通俗说法就是判断一个字符串是不是另外一个字符串的子串。
二、分析:
1、首先,回想一下字符串的模式最简单思维是什么?即是:BF算法。BF算法的基本思维是:用来两个计数指针分别代表主串和模式串中正在比较的位置。 当匹配失败时,我们会让主串的计数指针退回到本次开始匹配的下一位,让模式串的计数指针指向初始的位置从初始位置开始,再次匹配,一直到匹配成功,或者,主串结束。先看看BF的代码。
#include <stdio.h>
#include <string.h>
const int N = 1e5 + 10;
int BF(char a[], char b[])
{
int i = 0, j = 0;
while(i < strlen(a) && j < strlen(b))
{
if(a[i] == b[i])
{
i++;
j++;
}
else
{
i = i - j + 1;
j = 0;
}
}
if(j == strlen(b)) return 1; // 匹配成功平
else return 0; // 匹配失败
}
int main()
{
char a[N], b[N];
scanf("%s %s", a, b);
if(BF(a, b) == 1) printf("yes\n");
else printf("no\n");
}
2、我们可以很容易想到,在每次不匹配的之前一段时间是能够进行匹配的,如果我们每次匹配失败我们都要重新头开始匹配的话,那我们之前的那一段匹配不就成了无用功吗?我们可以想办法将他们应用起来
加入先在主串是:ababcabcacbab,模式串是abacb
我们第一次匹配时:
ababcabcabacb
abac
这个时候匹配失败,按照BF的做法,我们应该回到b处重新开始匹配,我们可以发现主串的12位置的字母和34位置的字母是相等的,我们下一次匹配可以保持主串不动,让子串的第二个字符b和主串此时的位置的字符b匹配然后继续后移匹配。
之后的步骤
ababcabcabacb
aba
ababcabcabacb
a
ababcabcabacb
aba
ababcabcabacb
a
ababcabcabacb
abacb
匹配成功!
3、在上述匹配中,我们实际上寻找的是模式串中,不匹配位置之前的最长的前面与后面相等的部分(即最大前缀和后缀),我们只需要将最大前缀移动到对应的最大后缀的位置处,即可以在主串保持不后退的情况下,让模式匹配继续,这样我们就将之前匹配失败时的东西也用上了。这就是kmp实现的基本思想。
4、从上面我们可以看出,kmp的核心即是求最大前后缀。我们一般使用next数组来储存计数指针移动到某个位置时的最大前缀初始位置。
举例说明:现给定字符串“abcabcacbc”
模式串 | a | b | c | a | b | c | a | c | b | c |
next | -1 | 0 | 0 | 0 | 1 | 2 | 2 | 3 | 3 | 4 |
我们默认next数组的第一项为-1,当匹配的时候就让next数组加1,不匹配的时候就让next等于上一个位置的next。即:
void GetNext(string t)
{
int len = t.length();
ne[0] = -1;
int k = -1; // 表示从头开始
int j = 0;
while(j < len - 1)
{
// p[k]表示前缀,p[j]表示后缀
if(k == -1 || t[j] == t[k])
{
k++; // 记录前缀的位置
j++; // 模式串现在移动到的位置
ne[j] = k;
}
else
{
k = ne[k]; // 结束的位置前缀等于自己。
}
}
}
5、之后便是用next数组来进行模式匹配了
整个代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 10010;
int ne[N];
void GetNext(string t)
{
int len = t.length();
ne[0] = -1;
int k = -1; // 表示从头开始
int j = 0;
while(j < len - 1)
{
// p[k]表示前缀,p[j]表示后缀
if(k == -1 || t[j] == t[k])
{
k++;
j++;
ne[j] = k;
}
else
{
k = ne[k];
}
}
}
int KMP(string s, string t)
{
int i = 0, j = 0;
int k1 = s.length();
int k2 = t.length();
while(i < k1 && j < k2)
{
if(j == -1 || s[i] == t[j])
{
i++;
j++;
}
else
{
j = ne[j];
}
}
if(j == k2) return i - j;
return -1;
}
int main()
{
string s;
cin >> s;
int n;
cin >> n;
while(n--)
{
string t;
cin >> t;
GetNext(t);
if(KMP(s, t) == -1) cout << "NOT FOUND";
else
{
cout << "Yes";
}
cout << endl;
}
}