1.蛮力法:
枚举所有可能的乘法次序,针对每种次序计算基本运算的次数,从中找出具有最小运算次数的乘法次序,每一种乘法次序对应了一种在n个项中加n-1对括号。
2.动态规划法:
Ai…j:表示矩阵链相乘的子问题Ai,Ai+1…Aj;
M[i…j]:表示得到乘积Ai…j所用的最少基本运算次数;
假定,最后一次相乘发生在矩阵链Ai…kAk+1…j之间m[i,j]=min{m[i,k]+m[k+1,j]+Pi=1PkPj}满足优化原则。
也就是说,m[i,j]最小值时,m[i,k],m[k+1,j]也是最小的。
递归算法伪代码
If i==j
Mm[i,j]=0;s[i,j]=i; retrun m [i,j]
M[i,j]=无穷大
S[i,j]=i
For k= i to j-1 do
Q=RMC(p,i,k)+RMC(p,k+1,j)+
If q<m[i,j]
Then m[i,j]=q
s[i,j]=kk
Return m[i,j];
迭代算法伪代码:
m[i,j]=0,s[i,j]=i,1<=i<=j<=n
For r=2 to n do
For i=1 to n-r+1 do
J=i+r-1
m[i,j]=m[i+1,j]+
s[i,j]=i
For k= i+1 to j-1 do
T=m[i,j]+m[k+1,j]+
If t<m[i,j]
m[i,j]=t
s[i,j]=k
迭代算法复杂度O(n^3);