路径-java

小蓝学习了最短路径之后特别高兴,他定义了一个特别的图,希望找到图 中的最短路径。

小蓝的图由 2021 个结点组成,依次编号 1 至 2021。

对于两个不同的结点 a, b,如果 a 和 b 的差的绝对值大于 21,则两个结点 之间没有边相连;如果 a 和 b 的差的绝对值小于等于 21,则两个点之间有一条 长度为 a 和 b 的最小公倍数的无向边相连。

例如:结点 1 和结点 23 之间没有边相连;结点 3 和结点 24 之间有一条无 向边,长度为 24;结点 15 和结点 25 之间有一条无向边,长度为 75。

请计算,结点 1 和结点 2021 之间的最短路径长度是多少。

思路:

  • 先初始化图,将有无向边的节点求出,a,b的最小公倍数为 a*b/gcd(a,b)
  • floyd 算法求单源最短路径
  • 注意这里试探的时候要处理越界的情况

public class 路径 {
	
	public static void main(String[] args) {
		
		// 建图
		int x=1,y=2022;
		int[][] map=new int[2022][2022];
		for (int i = 1; i <2022; i++) {
			for (int j = 1; j <2022; j++) {
				if (i==j) {
					map[i][j]=0;
					continue;
				}
				if (Math.abs(i-j)>21) {
					map[i][j]=Integer.MAX_VALUE;
					continue;
				}else {
					map[i][j]=(i*j)/gcd(i,j);
				}
			}
		}
//		System.out.println(map[15][25]);
		// map[i][j] 转化为 i,到j的最短路径
		for (int k = 1; k < 2022; k++) {
			for (int i = 1; i < 2022; i++) {
				for (int j = 1; j < 2022; j++) {
					if (map[i][k]!=Integer.MAX_VALUE&&map[k][j]!=Integer.MAX_VALUE) {
						map[i][j]=Math.min(map[i][j], map[i][k]+map[k][j]);
					}
				}
			}
		}
		System.out.println(map[1][2021]);
		
		
	}

	private static int gcd(int i, int j) {// j肯定不能为0做分母,为0时也不可能返回0
		return j==0? i: gcd(j, i%j) ;
	}
	
	
	
}

答案:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值