5.最长回文子串(动态规划)

leetcode 题目链接 :
https://leetcode-cn.com/problems/longest-palindromic-substring/
相关题目: 回文子串

题目描述:
在这里插入图片描述
解法:动态规划

动态规划 做题 三个步骤:

  1. 确定dp数组 以及下标含义
  2. 根据数组下标含义推出状态转移方程
  3. 确定遍历顺序

此题按这三个步骤的分析如下:

  • dp[i][j] 表示区间[i, j] (闭区间) 是否回文串(true表示是)
  • 主要分析 s[i] 和 s[j]
    1. s[i] != s[j]
    dp[i][j] = false;
    2. s[i] == s[j]
    此时分析情况如下:
    * i == j, 此时只有一个元素,那么肯定是回文串。
    * j - i == 2 ,此时中间夹着一个字符,比如 aba,那么此时也是一个回文串。
    * j - i > 2 时,dp[i][j] 此时要想是回文串,那么dp[i + 1][j - 1] 一定是 true,也就是说在 [i + 1, j - 1] 这个 区间是一个回文串。
    3. 确定遍历顺序。根据 递推公式,可以知道。dp[i][j] 的值需要由dp[i + 1][j - 1]判断 。

代码:

class Solution {
    public String longestPalindrome(String s) {

        int len = s.length();
        int maxLen = 1;   // 表示最长回文子串
        String rest = ""; //函数返回值
        boolean[][] dp = new boolean[len][len]; // 动态规划数组 
        for(int i = len - 1; i >= 0; i--){
            for(int j = i; j < len; j++){
                if(s.charAt(i) != s.charAt(j)) dp[i][j] = false;
                else {
                    if(j == i || j - i < 3) {
                        dp[i][j] = true;
                    }
                    if(j - i > 2) {
                        if(dp[i + 1][j - 1]){
                            dp[i][j] = true;
                        }
                    }
                }
                if(dp[i][j] && j - i + 1 >= maxLen){
                    maxLen = j - i + 1;
                    rest = s.substring(i, j + 1);
                }
            }
        }
        return rest;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值