如何求出二值图像中物体的个数、最大物体的面积(算法思路,无代码)

前言

        这2个问题中,其实求出个数的时候就已经能够很简单地求出最大物体的面积了。相关算法的过程其实与二部图算法及其相似。

求物体的个数、面积

       

        我们假设二值图像如上,1代表前景,0代表背景。那么这个图像一共有两个图形。 我们求取面积的方式如下:

        1、复制一个与原图相同大小的矩阵,用于存每各像素值归属于哪个物体或者背景。我们可以设定背景为0,物体则按照序号编排。得到的矩阵如下:

         2、遍历每一个像素值,如果该像素值是1(前景),且他的归属矩阵为0,则对他进行归属操作,并判断其周围的像素值是否可以

以下是一个使用OpenMV识别图像中特定物体的数量的示例代码: ```python import sensor, image, time # 初始化OpenMV摄像头 sensor.reset() sensor.set_pixformat(sensor.RGB565) sensor.set_framesize(sensor.QVGA) sensor.skip_frames(time = 2000) # 加载要识别的图像 template = image.Image("/template.bmp") # 设置阈,使得只有与模板匹配程度高于此阈的区域才被认为是目标物体 threshold = 0.7 while True: # 获取当前帧 img = sensor.snapshot() # 使用模板匹配算法,在图像中查找与模板匹配的区域 match = img.find_template(template, threshold) # 统计匹配到的区域数量 count = 0 while match: count += 1 # 在匹配到的区域上标记一个矩形 img.draw_rectangle(match.rect()) # 在串口打印匹配到的区域的坐标和匹配程度 print("Matched area at ({}, {}) with confidence {}".format(match.x(), match.y(), match.conf())) # 继续查找下一个匹配的区域 match = img.find_template(template, threshold, roi=match.rect()) # 显示匹配到的区域数量 print("Found {} matches".format(count)) ``` 在这个示例代码中,我们首先初始化OpenMV摄像头并加载要识别的图像模板。然后我们循环读取每一帧图像,使用模板匹配算法图像中查找与模板匹配的区域,并统计匹配到的区域数量。在串口上打印匹配到的区域的坐标和匹配程度,并在匹配到的区域上标记一个矩形。最后,我们显示匹配到的区域数量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刘下来邦我吧

头发加了一根

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值