978. 最长湍流子数组

这篇博客介绍了如何利用双指针和符号数组的方法解决最大湍流子数组的问题。作者提供了两种解题思路,分别是双指针滑动窗口和构建符号数组来简化条件判断。在代码实现中,通过遍历数组,根据相邻元素关系构建符号数组,然后通过双指针更新最大湍流子数组的长度。这种方法有效地简化了问题并提高了求解效率。
摘要由CSDN通过智能技术生成

978. 最长湍流子数组

当 A 的子数组 A[i], A[i+1], …, A[j] 满足下列条件时,我们称其为湍流子数组:

若 i <= k < j,当 k 为奇数时, A[k] > A[k+1],且当 k 为偶数时,A[k] < A[k+1];
或 若 i <= k < j,当 k 为偶数时,A[k] > A[k+1] ,且当 k 为奇数时, A[k] < A[k+1]。
也就是说,如果比较符号在子数组中的每个相邻元素对之间翻转,则该子数组是湍流子数组。

返回 A 的最大湍流子数组的长度。

解题:

法一:双指针(滑动窗口/滚动数组)

看到子数组肯定先想到双指针啊
依旧是大循环套小循环,只不过判定条件要处理一下

法二:符号数组

先对原数组进行处理,这样转化判定条件的时候方便很多

class Solution:
    def maxTurbulenceSize(self, arr: List[int]) -> int:
        sign = []  # 符号数组
        for i in range(1, len(arr)):
            if arr[i-1] < arr[i]:
                sign.append(1)
            elif arr[i-1] > arr[i]:
                sign.append(-1)
            else:
                sign.append(0)
        res = 0
        ans = 0
        i = 0
        while i < len(sign):
            if i==0 and sign[0] != 0:
                ans += 1
                res = max(ans, res)
            else:
                if sign[i] == 0:
                    ans = 0
                else:
                    if sign[i]*sign[i-1] == 1 or sign[i-1] == 0: 
                        ans = 1
                    if sign[i]*sign[i-1] == -1:
                        ans += 1
                        res = max(res, ans)
            i += 1
        return res + 1 

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Grayson Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值