- 博客(6)
- 资源 (1)
- 收藏
- 关注
原创 远程服务器后台运行python程序
输入 nvidia-smi,会显示GPU的使用情况,以及占用GPU的应用程序,可以选择空闲GPU。2>&1 表示将错误也重定向到输出文件中,最后一个&表示在后台运行。
2024-05-10 14:22:51
152
原创 R-CNN系列算法总结
R-CNN系列算法是经典的two-stage的目标检测算法,相较于one-stage精度更高,但是速度略有下降。候选框选取——特征提取——对候选框进行分类(判定类别)和回归(修正候选框位置)以下是R-CNN的结构图候选框选取;特征提取;线性的SVM分类器(二分类,yesorno)关于SVM使用选择性搜索的方法为整张图片生成约2000个候选框。选择性搜索假设物体存在的区域之间具有相似性和连续性。首先使用分割手段,将图像分割成小区域,然后计算每两个相邻区域的相似度,并合并可能性最高的两个区域。...
2022-07-20 14:28:24
1542
原创 视频摘要算法概述
DSNet: A Flexible Detect-to-Summarize Networkfor Video Summarization论文代码不同于以往将视频摘要视为回归问题(没有考虑时间相关性和完整性约束),2021年,最早的考虑这两者。视频摘要通常分为三步:1、镜头边界的检测2、每帧的重要程度分数预测3、关键帧选取现有的视频摘要算法分成三类,无监督、弱监督和有监督无监督的方法,用启发式搜索,代表性、多样性、稀疏性,来发现关键镜头代表性的方法是基于聚类的、基于字典学习的、子集选择的、强化
2022-07-13 21:19:33
3589
原创 Faster R-CNN笔记
基于fast r-cnn改进,指出它忽略了在候选区域选择上的时间花费。所以Faster应该是会在候选框上做改进。原话是Now, proposals are the computational bottleneck in state-of-the-art detection systems.论文经过观察发现,fast里的卷积生成的特征输入基于区域的检测头,也能把这特征用来生成候选框。构建了一个RPN网络,把这些特征再输入两个分支。一个是定位,输出多个位置;一个是根据这些位置,每个位置上生成k个候选框(通常是
2022-07-13 16:29:23
671
原创 全连接神经网络、卷积神经网络
刚开始学习机器学习没多久,记录一下神经网络的知识。基于李宏毅老师的机器学习课程,图片和内容也是来自老师的课程笔记整理(科学上网,然后这里)。深度学习有三个步骤选择一个合适的神经网络—>选择一个模型评估方法—>选择最优的函数全连接神经网络,应该叫做全连接前馈神经网络(FullyConnectFeedforwardNetwork),全连接(FullyConnect)指的是下一层每一个神经元都会与上一层的每一个神经元相连;...
2022-06-06 12:17:07
4594
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人