UPC——Contest2969 - 2021秋组队训练赛第十四场

C题【博弈论找规律】

Hakase and Nano

// #pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
const int N = 1e6 + 10;
const int M = 2e6 + 1000;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;
const int pi = acos(-1);
#define IOS                  \
    ios::sync_with_stdio(0); \
    cin.tie(0);              \
    cout.tie(0);
ll T, m, f, tot;
ll a[N];
void init()
{
    memset(a, 0, sizeof(a));
    tot = 0;
}
int main()
{
    // IOS;
    scanf("%lld", &T);
    while (T--)
    {
        init();
        scanf("%lld %lld", &m, &f);
        for (int i = 1; i <= m; i++)
        {
            scanf("%lld", &a[i]);
            if (a[i] == 1)
                tot++;
        }
        if (f == 1)
        {
            if (tot % 3 == 0 && tot == m)
                puts("No");
            else
                puts("Yes");
        }
        else
        {
            if ((tot == m - 1 && m % 3 == 0) || (m % 3 == 1 && tot >= m - 1))
                puts("No");
            else
                puts("Yes");
        }
    }
    return 0;
}

D题【找规律+递推+乘法逆元】

Master of Random
越界问题蚌埠住了,一直RE

// #pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
const int N = 1e6 + 10;
const int M = 2e6 + 1000;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;
const int pi = acos(-1);
#define IOS                  \
    ios::sync_with_stdio(0); \
    cin.tie(0);              \
    cout.tie(0);
ll T, n, res, cnt;
ll a[N], fac[N], inv[N]; //1e8运行错误,内存会爆
ll ksm(ll a, ll b)
{
    ll res = 1;
    for (; b; b >>= 1)
    {
        if (b & 1)
            res = res * a % mod; //快速幂能写错giao
        a = a * a % mod;
    }
    return res % mod;
}
void init()
{
    fac[0] = 1; //
    for (ll i = 1; i < N; i++)
    {
        fac[i] = fac[i - 1] * i % mod;
        inv[i] = ksm(i, mod - 2);
    }
}
int main()
{
    // IOS;
    init();
    scanf("%lld", &T);
    while (T--)
    {
        scanf("%lld", &n);
        for (ll i = 0; i < n; i++)
            scanf("%lld", &a[i]);
        cnt = fac[n - 1];
        res = a[0] * fac[n - 1] % mod;
        for (ll i = 1; i < n; i++)
        {
            cnt = (cnt + fac[n - 1] * inv[i] % mod) % mod;
            res = (res + cnt * a[i] % mod) % mod;
        }
        res = res * ksm(fac[n], mod - 2) % mod;
        // res = res *inv[fac[n]] % mod;//inv[fac[n]]会越界
        printf("%lld\n", res % mod);
    }
    return 0;
}

K题【转化+二分+预处理】

Master of Sequence

// #pragma GCC optimize(3, "Ofast", "inline")
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
typedef pair<int, int> pii;
typedef pair<long long, long long> pll;
const int N = 1e5 + 5;
const int M = 2e6 + 1000;
const int inf = 0x3f3f3f3f;
const int mod = 998244353;
const int pi = acos(-1);
#define IOS                  \
    ios::sync_with_stdio(0); \
    cin.tie(0);              \
    cout.tie(0);
ll T, n, m, x, op, y, sum;
ll a[N], b[N], dp[1005][1005];
void init()
{
    memset(a, 0, sizeof(a));
    memset(b, 0, sizeof(b));
    memset(dp, 0, sizeof(dp));
    sum = 0;
}
bool check(ll t, ll k)
{
    ll res = 0;
    for (int i = 1; i <= 1000; i++)
    {
        res += t / i * dp[i][0]; //t/i表示种类,dp[i][0]表示t/i的个数
        res -= dp[i][t % i + 1]; //这里i就表示a[i]
    }
    return res >= k; //精简写法,高效牛逼
}
int main()
{
    // IOS;
    scanf("%lld", &T);
    while (T--)
    { //dp[i][j]表示a[i]数组中=i且b[i]%a[i]≥j的“个数”
        init();
        scanf("%lld%lld", &n, &m);
        for (int i = 1; i <= n; i++)
            scanf("%lld", &a[i]);
        for (int i = 1; i <= n; i++)
        {
            scanf("%lld", &b[i]);
            sum += (b[i] / a[i]);
            dp[a[i]][b[i] % a[i]]++;
        }
        for (int i = 1; i <= 1000; i++) //暴力枚举i从1~1000,求dp数组
            for (int j = i; j; j--)
                dp[i][j - 1] += dp[i][j]; //
        while (m--)
        {
            scanf("%lld%lld", &op, &x);
            if (op == 1)
            {
                scanf("%lld", &y);
                sum -= b[x] / a[x];
                for (int j = b[x] % a[x]; ~j; j--)
                    dp[a[x]][j]--;
                for (int j = b[x] % y; ~j; j--)
                    dp[y][j]++;
                sum += b[x] / y;
                a[x] = y; //这一步才表示真正的改变
            }
            else if (op == 2)
            {
                scanf("%lld", &y);
                sum -= b[x] / a[x];
                for (int j = b[x] % a[x]; ~j; j--)
                    dp[a[x]][j]--;
                for (int j = y % a[x]; ~j; j--)
                    dp[a[x]][j]++;
                sum += y / a[x];
                b[x] = y; //这一步才表示真正的改变
            }
            else
            {
                ll l = 1, r = 1e10; //r开大点
                ll res = 0;
                while (l <= r)
                {
                    ll mid = l + r >> 1;
                    if (check(mid, x + sum))
                    {
                        res = mid;
                        r = mid - 1;
                    }
                    else
                        l = mid + 1;
                }
                printf("%lld\n", res);
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WTcrazy _

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值